Display options
Share it on

Mol Reprod Dev. 2021 Nov;88(11):718-730. doi: 10.1002/mrd.23539. Epub 2021 Oct 08.

TSSK3, a novel target for male contraception, is required for spermiogenesis.

Molecular reproduction and development

Saman Nayyab, María G Gervasi, Darya A Tourzani, Diego A Caraballo, Kula N Jha, Maria E Teves, Wei Cui, Gunda I Georg, Pablo E Visconti, Ana M Salicioni

Affiliations

  1. Department of Veterinary & Animal Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
  2. Department of Molecular and Cellular Biology Graduate Program, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
  3. Biotechnology Training Program, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
  4. Instituto de Ecología, Genética y Evolución (IEGEBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  5. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  6. Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.
  7. Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.
  8. Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
  9. Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota, USA.

PMID: 34623009 DOI: 10.1002/mrd.23539

Abstract

We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO. The aim of this study was to develop KO mouse models of TSSK3 and to validate this kinase as a target for the development of a male contraceptive. We used CRISPR/Cas9 technology to generate the TSSK3 KO allele on B6D2F1 background mice. Male heterozygous pups were used to establish three independent TSSK3 KO lines. After natural mating of TSSK3 KO males, females that presented a plug (indicative of mating) were monitored for the following 24 days and no pregnancies or pups were found. Sperm numbers were drastically reduced in all three KO lines and, remarkably, round spermatids were detected in the cauda epididymis of KO mice. From the small population of sperm recovered, severe morphology defects were detected. Our results indicate an essential role of TSSK3 in spermiogenesis and support this kinase as a suitable candidate for the development of novel nonhormonal male contraceptives.

© 2021 Wiley Periodicals LLC.

Keywords: TSSK3; evolution; fertilization; intronless gene; kinases; nonhormonal male contraceptive; sperm; spermatogenesis; testis-specific

References

  1. Bielke, W., Blaschke, R. J., Miescher, G. C., Zurcher, G., Andres, A. C., & Ziemiecki, A. (1994). Characterization of a novel murine testis-specific serine/threonine kinase. Gene, 139, 235-239. - PubMed
  2. Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). 2017). The SWISS-MODEL repository-new features and functionality. Nucleic Acids Research, 45, D313-D319. - PubMed
  3. Boutet, I., Moraga, D., Marinovic, L., Obreque, J., & Chavez-Crooker, P. (2008). Characterization of reproduction-specific genes in a marine bivalve mollusc: Influence of maturation stage and sex on mRNA expression. Gene, 407, 130-138. - PubMed
  4. Bucko-Justyna, M., Lipinski, L., Burgering, B. M., & Trzeciak, L. (2005). Characterization of testis-specific serine-threonine kinase 3 and its activation by phosphoinositide-dependent kinase-1-dependent signalling. The FEBS Journal, 272, 6310-6323. - PubMed
  5. Chemes, H. E. (2013). Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy. Methods in Molecular Biology, 927, 321-348. - PubMed
  6. Cheng, C. Y., & Mruk, D. D. (2011). Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: Novel insights from studies on Eps8 and Arp3. The Biochemical Journal, 435, 553-562. - PubMed
  7. Crapster, J. A., Rack, P. G., Hellmann, Z. J., Le, A. D., Adams, C. M., Leib, R. D., Elias, J. E., Perrino, J., Behr, B., Li, Y., Lin, J., Zeng, H., & Chen, J. K. (2020). HIPK4 is essential for murine spermiogenesis. eLife, 9, 9. - PubMed
  8. Hanks, S. K., & Quinn, A. M. (1991). Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Methods in Enzymology, 200, 38-62. - PubMed
  9. Hao, Z., Jha, K. N., Kim, Y. H., Vemuganti, S., Westbrook, V. A., Chertihin, O., Markgraf, K., Flickinger, C. J., Coppola, M., Herr, J. C., & Visconti, P. E. (2004). Expression analysis of the human testis-specific serine/threonine kinase (TSSK) homologues. A TSSK member is present in the equatorial segment of human sperm. Molecular Human Reproduction, 10, 433-444. - PubMed
  10. Hawkinson, J. E., Sinville, R., Mudaliar, D., Shetty, J., Ward, T., Herr, J. C., & Georg, G. I. (2017). Potent pyrimidine and pyrrolopyrimidine inhibitors of testis-specific serine/threonine kinase 2 (TSSK2). ChemMedChem, 12, 1857-1865. - PubMed
  11. Herrmann, B. G., Koschorz, B., Wertz, K., McLaughlin, K. J., & Kispert, A. (1999). A protein kinase encoded by the T complex responder gene causes non- mendelian inheritance. Nature, 402, 141-146. - PubMed
  12. Hwang, J. Y., Mannowetz, N., Zhang, Y., Everley, R. A., Gygi, S. P., Bewersdorf, J., Lishko, P. V., & Chung, J. J. (2019). Dual sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell, 177, 1480-1494. - PubMed
  13. Jaleel, M., McBride, A., Lizcano, J. M., Deak, M., Toth, R., Morrice, N. A., & Alessi, D. R. (2005). Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Letters, 579, 1417-1423. - PubMed
  14. Jinno, A., Tanaka, K., Matsushime, H., Haneji, T., & Shibuya, M. (1993). Testis-specific mak protein kinase is expressed specifically in the meiotic phase in spermatogenesis and is associated with a 210-kilodalton cellular phosphoprotein. Molecular and Cellular Biology, 13, 4146-4156. - PubMed
  15. Kosakovsky Pond, S. L., & Frost, S. D. (2005). Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22, 1208-1222. - PubMed
  16. Kueng, P., Nikolova, Z., Djonov, V., Hemphill, A., Rohrbach, V., Boehlen, D., Zuercher, G., Andres, A. C., & Ziemiecki, A. (1997). A novel family of serine/threonine kinases participating in spermiogenesis. The Journal of Cell Biology, 139, 1851-1859. - PubMed
  17. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. - PubMed
  18. Li, Y., Sosnik, J., Brassard, L., Reese, M., Spiridonov, N. A., Bates, T. C., Johnson, G. R., Anguita, J., Visconti, P. E., & Salicioni, A. M. (2011). Expression and localization of five members of the testis-specific serine kinase (Tssk) family in mouse and human sperm and testis. Molecular Human Reproduction, 17, 42-56. - PubMed
  19. Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47, W636-W641. - PubMed
  20. Marcello, M., Rizvi, A., Visconti, P. E., Salicioni, A. M., & Singson, A. (2012). Testis-specific serine/threonine kinase (TSSK) function is necessary for spermiogenesis in Caenorabdites elegans. Paper presented at: 37th Annual conference of the American Society of Andrology (ASA). - PubMed
  21. Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Molecular Biology and Evolution, 30, 1196-1205. - PubMed
  22. Murrell, B., Weaver, S., Smith, M. D., Wertheim, J. O., Murrell, S., Aylward, A., Eren, K., Pollner, T., Martin, D. P., Smith, D. M., Scheffler, K., & Kosakovsky Pond, S. L. (2015). Gene-wide identification of episodic selection. Molecular Biology and Evolution, 32, 1365-1371. - PubMed
  23. Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S. L. (2012). Detecting individual sites subject to episodic diversifying selection. PLOS Genetics, 8, e1002764. - PubMed
  24. Nayak, S., Galili, N., & Buck, C. A. (1998). Immunohistochemical analysis of the expression of two serine-threonine kinases in the maturing mouse testis. Mechanisms of Development, 74, 171-174. - PubMed
  25. Nolan, M. A., Babcock, D. F., Wennemuth, G., Brown, W., Burton, K. A., & McKnight, G. S. (2004). Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proceedings of the National Academy of Sciences of the United States of America, 101, 13483-13488. - PubMed
  26. O'Donnell, L. (2014). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis, 4, e979623. - PubMed
  27. Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320-W324. - PubMed
  28. Salicioni, A. M., Gervasi, M. G., Sosnik, J., Tourzani, D. A., Nayyab, S., Caraballo, D. A., & Visconti, P. E. (2020). Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraceptiondagger. Biology of Reproduction, 103, 264-274. - PubMed
  29. Sassone-Corsi, P. (1997). Transcriptional checkpoints determining the fate of male germ cells. Cell, 88, 163-166. - PubMed
  30. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676-682. - PubMed
  31. Shalom, S., & Don, J. (1999). Tlk, a novel evolutionarily conserved murine serine threonine kinase, encodes multiple testis transcripts. Molecular Reproduction and Development, 52, 392-405. - PubMed
  32. Shang, P., Baarends, W. M., Hoogerbrugge, J., Ooms, M. P., van Cappellen, W. A., de Jong, A. A., Dohle, G. R., van Eenennaam, H., Gossen, J. A., & Grootegoed, J. A. (2010). Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. Journal of Cell Science, 123, 331-339. - PubMed
  33. Sharpe, R. M. (1994). Regulation of spermatogenesis. In E. Knobil, & J. D. Neill (Eds.), The physiology of reproduction (pp. 1363-1434). Raven Press, Ltd. - PubMed
  34. Smith, M. D., Wertheim, J. O., Weaver, S., Murrell, B., Scheffler, K., & Kosakovsky Pond, S. L. (2015). Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32, 1342-1353. - PubMed
  35. Sosnik, J., Miranda, P. V., Spiridonov, N. A., Yoon, S. Y., Fissore, R. A., Johnson, G. R., & Visconti, P. E. (2009). Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. Journal of Cell Science, 122, 2741-2749. - PubMed
  36. Spiridonov, N. A., Wong, L., Zerfas, P. M., Starost, M. F., Pack, S. D., Paweletz, C. P., & Johnson, G. R. (2005). Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Molecular and Cellular Biology, 25, 4250-4261. - PubMed
  37. Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609-W612. - PubMed
  38. Toshima, J., Koji, T., & Mizuno, K. (1998). Stage-specific expression of testis-specific protein kinase 1 (TESK1) in rat spermatogenic cells. Biochemical and Biophysical Research Communications, 249, 107-112. - PubMed
  39. Toshima, J., Tanaka, T., & Mizuno, K. (1999). Dual specificity protein kinase activity of testis-specific protein kinase 1 and its regulation by autophosphorylation of serine-215 within the activation loop. Journal of Biological Chemistry, 274, 12171-12176. - PubMed
  40. Tourzani, D. A., Paudel, B., Miranda, P. V., Visconti, P. E., & Gervasi, M. G. (2018). Changes in protein O-GlcNAcylation during mouse epididymal sperm maturation. Frontiers in Cell and Developmental Biology, 6, 60. https://doi.org/10.3389/fcell.2018.00060 - PubMed
  41. Tseng, T. C., Chen, S. H., Hsu, Y. P., & Tang, T. K. (1998). Protein kinase profile of sperm and eggs: Cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA and Cell Biology, 17, 823-833. - PubMed
  42. Visconti, P. E., Hao, Z., Purdon, M. A., Stein, P., Balsara, B. R., Testa, J. R., Herr, J. C., Moss, S. B., & Kopf, G. S. (2001). Cloning and chromosomal localization of a gene encoding a novel serine/threonine kinase belonging to the subfamily of testis-specific kinases. Genomics, 77, 163-170. - PubMed
  43. Walden, P. D., & Cowan, N. J. (1993). A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette. Molecular and Cellular Biology, 13, 7625-7635. - PubMed
  44. Wang, X., Wei, Y., Fu, G., Li, H., Saiyin, H., Lin, G., Wang, Z., Chen, S., & Yu, L. (2015). Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Molecular Human Reproduction, 21, 136-145. - PubMed
  45. Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Kosakovsky Pond, S. L. (2018). Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Molecular Biology and Evolution, 35, 773-777. - PubMed
  46. Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L., & Scheffler, K. (2015). RELAX: Detecting relaxed selection in a phylogenetic framework. Molecular Biology and Evolution, 32, 820-832. - PubMed
  47. Xu, B., Hao, Z., Jha, K. N., Zhang, Z., Urekar, C., Digilio, L., Pulido, S., Strauss, J. F., 3rd, Flickinger, C. J., & Herr, J. C. (2008). Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Developmental Biology, 319, 211-222. - PubMed
  48. Xu, X., Toselli, P. A., Russell, L. D., & Seldin, D. C. (1999). Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit. Nature Genetics, 23, 118-121. - PubMed
  49. Zuercher, G., Rohrbach, V., Andres, A. C., & Ziemiecki, A. (2000). A novel member of the testis specific serine kinase family, tssk-3, expressed in the Leydig cells of sexually mature mice. Mechanisms of Development, 93, 175-177. - PubMed

Publication Types

Grant support