Display options
Share it on

J Physiol. 2021 Nov;599(21):4727-4729. doi: 10.1113/JP282357. Epub 2021 Oct 11.

Edward Carmeliet: his contributions and scientific legacy.

The Journal of physiology

Karin R Sipido, David A Eisner

Affiliations

  1. Department of Cardiovascular Sciences, Experimental Cardiology, Leuven, Belgium.
  2. Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.

PMID: 34533837 DOI: 10.1113/JP282357

[No abstract available.]

References

  1. Callewaert G, Carmeliet E & Vereecke J (1984). Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. J Physiol 349, 643-661. - PubMed
  2. Carmeliet E (1955). [Influence of rhythm on the duration of the action potential of the heart ventricle]. Arch Int Physiol Biochim 63, 222-232. - PubMed
  3. Carmeliet E (1992a). A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res 26, 433-442. - PubMed
  4. Carmeliet E. (1992b). Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther 262, 809-817. - PubMed
  5. Carmeliet E (1999). Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79, 917-1017. - PubMed
  6. Carmeliet E, Biermans G, Callewaert G & Vereecke J (1987). Potassium currents in cardiac cells. Experientia 43, 1175-1184. - PubMed
  7. Carmeliet E & Mubagwa K (1986). Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres. J Physiol 371, 201-217. - PubMed
  8. Carmeliet E & Vereecke J (2002). Cardiac Cellular Electrophysiology. Kluwer Academic Publishers, Boston, MA. - PubMed
  9. Carmeliet EE (1961). Chloride ions and the membrane potential of Purkinje fibres. J Physiol 156, 375-388. - PubMed
  10. Carmeliet EE, Horres CR, Lieberman M & Vereecke JS (1976). Developmental aspects of potassium flux and permeability of the embryonic chick heart. J Physiol 254, 673-692. - PubMed
  11. Colquhoun D, Neher E, Reuter H & Stevens CF (1981). Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294, 752-754. - PubMed
  12. Coraboeuf E & Carmeliet E (1982). Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392, 352-359. - PubMed
  13. Dan G-A, Martinez-Rubio A, Agewall S, Boriani G, Borggrefe M, Gaita F, van Gelder I, Gorenek B, Kaski JC, Kjeldsen K, Lip GYH, Merkely B, Okumura K, Piccini JP, Potpara T, Poulsen BK, Saba M, Savelieva I, Tamargo JL, Wolpert C; ESC Scientific Document Group (2018). Antiarrhythmic drugs-clinical use and clinical decision making: a consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) working group on cardiovascular pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace 20, 731-732. - PubMed
  14. Dobrev D, Graf E, Wettwer E, Himmel HM, Hála O, Doerfel C, Christ T, Schüler S & Ravens U (2001). Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK,ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104, 2551-2557. - PubMed
  15. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL, Huther ML, Richardson DW; CAST Investigators (1991). Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 324, 781-788. - PubMed
  16. Hodgkin AL & Horowicz P (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148, 127-160. - PubMed
  17. Leblanc N & Hume JR (1990). Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372-376. - PubMed
  18. Lederer WJ & Tsien RW (1976). Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol 263, 73-100. - PubMed
  19. Papp Z, Sipido KR, Callewaert G & Carmeliet E (1995). Two components of [Ca2+]i-activated Cl− current during large [Ca2+]i transients in single rabbit heart Purkinje cells. J Physiol 483, 319-330. - PubMed
  20. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekvål TM, Spaulding C & Van Veldhuisen DJ (2015). 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36, 2793-2867. - PubMed
  21. Rosen MR & Janse MJ (2010). Concept of the vulnerable parameter: the Sicilian Gambit revisited. J Cardiovasc Pharmacol 55, 428-437. - PubMed
  22. Sah R, Ramirez RJ & Backx PH (2002). Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation-contraction coupling. Circ Res 90, 165-173. - PubMed
  23. Shang W, Lu F, Sun T, Xu J, Li L-L, Wang Y, Wang G, Chen L, Wang X, Cannell MB, Wang S-Q & Cheng H (2014). Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ Res 114, 412-420. - PubMed
  24. Sipido KR, Callewaert G & Carmeliet E (1993). [Ca2+]i transients and [Ca2+]i-dependent chloride current in single Purkinje cells from rabbit heart. J Physiol 468, 641-667. - PubMed
  25. Sipido KR, Callewaert G & Carmeliet E (1995a). Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ Res 76, 102-109. - PubMed
  26. Sipido KR, Callewaert G, Porciatti F, Vereecke J & Carmeliet E (1995b). [Ca2+]i-dependent membrane currents in guinea-pig ventricular cells in the absence of Na/Ca exchange. Pflugers Arch 430, 871-878. - PubMed
  27. Sipido KR, Carmeliet E & Pappano A (1995c). Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. J Physiol 489, 1-17. - PubMed
  28. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology (1991). The Sicilian gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 84, 1831-1851. - PubMed
  29. Trafford AW, Diaz ME, O'Neill SC & Eisner DA (1995). Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. Journal of Physiology 488, 577-586. - PubMed
  30. Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B & Baczkó I (2021). Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 101, 1083-1176. - PubMed
  31. Verkerk AO, Tan HL, Kirkels JH & Ravesloot JH (2003). Role of Ca2+-activated Cl− current during proarrhythmic early afterdepolarizations in sheep and human ventricular myocytes. Acta Physiologica Scandinavica 179, 143-148. - PubMed
  32. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ & Lazzara R (2000). Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46, 376-392. - PubMed

Publication Types