Display options
Share it on

Methods Mol Biol. 2021;2357:3-20. doi: 10.1007/978-1-0716-1621-5_1.

Studying Bacterial Persistence: Established Methods and Current Advances.

Methods in molecular biology (Clifton, N.J.)

Elen Louwagie, Laure Verstraete, Jan Michiels, Natalie Verstraeten

Affiliations

  1. VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium.
  2. Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
  3. VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium. [email protected].
  4. Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. [email protected].

PMID: 34590248 DOI: 10.1007/978-1-0716-1621-5_1

Abstract

To date, we are living in a postantibiotic era in which several human pathogens have developed multidrug resistance and very few new antibiotics are being discovered. In addition to the problem of antibiotic resistance, every bacterial population harbors a small fraction of transiently antibiotic-tolerant persister cells that can survive lethal antibiotic attack. Upon cessation of the treatment, these persister cells wake up and give rise to a new, susceptible population. Studies conducted over the past two decades have demonstrated that persister cells are key players in the recalcitrance of chronic infections and that they contribute to antibiotic resistance development. As a consequence, the scientific interest in persistence has increased tremendously and while some questions remain unanswered, many important insights have been brought to light thanks to the development of dedicated techniques. In this chapter, we provide an overview of well-established methods in the field and recent advances that have facilitated the investigation of persister cells and we highlight the challenges to be tackled in future persistence research.

© 2021. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Antibiotic tolerance; Antibiotics; Bacterial persistence; Persistence

References

  1. Hobby GL, Meyer K, Chaffee E (1942) Observations on the mechanism of action of penicillin. Exp Biol Med 50:281–285 - PubMed
  2. Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 244:497–500 - PubMed
  3. Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775 - PubMed
  4. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372 - PubMed
  5. Amato SM, Fazen CH, Henry TC et al (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70 - PubMed
  6. Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354:aaf4268 - PubMed
  7. Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330 - PubMed
  8. Radzikowski JL, Schramke H, Heinemann M (2017) Bacterial persistence from a system-level perspective. Curr Opin Biotechnol 46:98–105 - PubMed
  9. Van den Bergh B, Fauvart M, Michiels J (2017) Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 41:219–251 - PubMed
  10. Balaban NQ, Helaine S, Lewis K et al (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448 - PubMed
  11. Wilmaerts D, Windels EM, Verstraeten N, Michiels J (2019) General mechanisms leading to persister formation and awakening. Trends Genet 35:401–411 - PubMed
  12. Gollan B, Grabe G, Michaux C, Helaine S (2019) Bacterial persisters and infection: past, present, and progressing. Annu Rev Microbiol 73:359–385 - PubMed
  13. Bakkeren E, Diard M, Hardt W-D (2020) Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 18:479–490 - PubMed
  14. Dewachter L, Fauvart M, Michiels J (2019) Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol Cell 76:255–267 - PubMed
  15. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56 - PubMed
  16. LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846 - PubMed
  17. Bojsen R, Regenberg B, Gresham D, Folkesson A (2016) A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations. Sci Rep 6:21874 - PubMed
  18. Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699–709 - PubMed
  19. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36 - PubMed
  20. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531 - PubMed
  21. Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microb Ecol 68:1–12 - PubMed
  22. Speziale P, Pietrocola G, Foster TJ, Geoghegan JA (2014) Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol 4:171 - PubMed
  23. Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA (2018) Inhibition and inactivation of uropathogenic Escherichia coli biofilms on urinary catheters by sodium selenite. Int J Mol Sci 19:1703 - PubMed
  24. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633 - PubMed
  25. Anderson GG, Martin SM, Hultgren SJ (2004) Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 6:1094–1101 - PubMed
  26. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007 - PubMed
  27. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemist 70:267–274 - PubMed
  28. Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80 - PubMed
  29. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751 - PubMed
  30. Waters EM, Rowe SE, O’Gara JP, Conlon BP (2016) Convergence of Staphylococcus aureus persister and biofilm research: can biofilms be defined as communities of adherent persister cells? PLoS Pathog 12:e1006012 - PubMed
  31. Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199 - PubMed
  32. LaFleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44 - PubMed
  33. Schumacher MA, Balani P, Min J et al (2015) HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524:59–64 - PubMed
  34. Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36:514–532 - PubMed
  35. Helaine S, Cheverton AM, Watson KG et al (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208 - PubMed
  36. Torrey HL, Keren I, Via LE et al (2016) High persister mutants in Mycobacterium tuberculosis. PLoS One 11:e0155127 - PubMed
  37. O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations: the review on antimicrobial resistance. Available via https://www.biomerieuxconnection.com/wp-content/uploads/2018/04/Tackling-Drug-Resistant-Infections-Globally_-Final-Report-and-Recommendations.pdf . Accessed 26 August 2020 - PubMed
  38. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642 - PubMed
  39. Levin-Reisman I, Ronin I, Gefen O et al (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–830 - PubMed
  40. Windels EM, Michiels JE, Fauvart M et al (2019) Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME 13:1239–1251 - PubMed
  41. Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80 - PubMed
  42. Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526 - PubMed
  43. Raha D, Wilson TR, Peng J et al (2014) The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res 74:3579–3590 - PubMed
  44. Pribluda A, De La Cruz CC, Jackson EL (2015) Intratumoral heterogeneity: from diversity comes resistance. Clin Cancer Res 21:2916–2923 - PubMed
  45. Terai H, Kitajima S, Potter DS et al (2018) ER stress signaling promotes the survival of cancer “persister cells” tolerant to EGFR tyrosine kinase inhibitors. Cancer Res 78:1044–1057 - PubMed
  46. Allison KR, Brynildsen MP, Collins JJ (2011) Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14:593–598 - PubMed
  47. Keren I, Shah D, Spoering A et al (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180 - PubMed
  48. Pu Y, Zhao Z, Li Y et al (2016) Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 62:284–294 - PubMed
  49. Sulaiman JE, Hao C, Lam H (2018) Specific enrichment and proteomics analysis of Escherichia coli persisters from rifampin pretreatment. J Proteome Res 17:3984–3996 - PubMed
  50. Cañas-Duarte SJ, Restrepo S, Pedraza JM (2014) Novel protocol for persister cells isolation. PLoS One 9:e88660 - PubMed
  51. Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53 - PubMed
  52. Roostalu J, Jõers A, Luidalepp H et al (2008) Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68 - PubMed
  53. Helaine S, Thompson JA, Watson KG et al (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107:3746–3751 - PubMed
  54. Claudi B, Spröte P, Chirkova A et al (2014) Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158:722–733 - PubMed
  55. Golam S, Kavousi P, Orman MA (2020) Flow-cytometry analysis reveals persister resuscitation characteristics. BMC Microbiol 20:202 - PubMed
  56. Windels EM, Meriem Z Ben, Zahir T et al (2019) Enrichment of persisters enabled by a ß-lactam-induced filamentation method reveals their stochastic single-cell awakening. Commun Biol 2:426 - PubMed
  57. Sulaiman JE, Lam H (2020) Proteomic investigation of tolerant Escherichia coli populations from cyclic antibiotic treatment. J Proteome Res 19:900–913 - PubMed
  58. Dörr T, Lewis K, Vulić M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760 - PubMed
  59. Johnson PJT, Levin BR (2013) Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 9:e1003123 - PubMed
  60. Mok WWK, Park JO, Rabinowitz JD, Brynildsen MP (2015) RNA futile cycling in model persisters derived from MazF accumulation. mBio 6:e01588-15 - PubMed
  61. Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099 - PubMed
  62. Hu Y, Coates ARM (2005) Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol Lett 243:117–124 - PubMed
  63. Dhar N (2010) Mckinney JD. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice 107:12275–12280 - PubMed
  64. De Groote VN, Verstraeten N, Fauvart M et al (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73–79 - PubMed
  65. Manuel J, Zhanel GG, De Kievit T (2010) Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 54:5173–5179 - PubMed
  66. Wang W, Chen J, Chen G et al (2015) Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation. Front Microbiol 6:1437 - PubMed
  67. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008 - PubMed
  68. Hansen S, Lewis K, Vulić M (2008) Role of gobal regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726 - PubMed
  69. Ma C, Sim S, Shi W et al (2010) Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett 303:33–40 - PubMed
  70. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. In: Romeo T (ed) bacterial bioflms. Current topics in microbiology and immunology, vol 322. Springer, Heidelberg - PubMed
  71. Spoering AL, Vulić M, Lewis K (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144 - PubMed
  72. Leung V, Lévesque CM (2012) A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194:2265–2274 - PubMed
  73. Girgis HS, Harris K, Tavazoie S (2012) Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci U S A 109:12740–12745 - PubMed
  74. Shan Y, Lazinski D, Rowe S et al (2015) Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio 6:e00078-15 - PubMed
  75. Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814 - PubMed
  76. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078 - PubMed
  77. Stewart B, Rozen DE (2011) Genetic variation for antibiotic persistence in Escherichia coli. Evolution 66:933–939 - PubMed
  78. Van den Bergh B, Michiels JE, Wenseleers T et al (2016) Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol 1:16020 - PubMed
  79. Fridman O, Goldberg A, Ronin I et al (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418–421 - PubMed
  80. Michiels JE, Van den Bergh B, Verstraeten N, Fauvart M (2016) In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrob Agents Chemother 60:4630–4637 - PubMed
  81. Mechler L, Herbig A, Paprotka K et al (2015) A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 59:5366–5376 - PubMed
  82. Khare A, Tavazoie S (2020) Extreme antibiotic persistence via heterogeneity-generating mutations targeting translation. mSystems 5:e00847-19 - PubMed
  83. Windels EM, Michiels JE, Bergh B Van Den, Fauvart M (2019) Antibiotics: combatting tolerance to stop resistance. mBio 10:e02095–19 - PubMed
  84. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. mBio 2:e00100-11 - PubMed
  85. Liebens V, Defraine V, Ven der Leyden A et al (2014) A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa. Pathog Dis 71:39–54 - PubMed
  86. Carvalhais V, França A, Cerca F et al (2014) Dormancy within Staphylococcus epidermidis biofilms: a transcriptomic analysis by RNA-seq. Appl Microbiol Biotechnol 98:2585–2596 - PubMed
  87. Wu S, Yu P-L, Wheeler D, Flint S (2018) Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with nisin. J Glob Antimicrob Resist 15:25–31 - PubMed
  88. Stapels DAC, Hill PWS, Westermann AJ et al (2018) Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362:1156–1160 - PubMed
  89. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63 - PubMed
  90. Sulaiman JE, Lam H (2019) Application of proteomics in studying bacterial persistence. Expert Rev Proteomics 16:227–239 - PubMed
  91. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914 - PubMed
  92. Betts JC, Lukey PT, Robb LC et al (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731 - PubMed
  93. Albrethsen J, Agner J, Piersma SR et al (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 12:1180–1191 - PubMed
  94. Gopinath V, Raghunandanan S, Gomez RL et al (2015) Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol Cell Proteomics 14:2160–2176 - PubMed
  95. Schubert OT, Ludwig C, Kogadeeva M et al (2015) Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe 18:96–108 - PubMed
  96. Li P, Seneviratne CJ, Alpi E et al (2015) Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob Agents Chemother 59:6101–6112 - PubMed
  97. Truong T, Zeng G, Lin Q et al (2016) Comparative ploidy proteomics of Candida albicans biofilms unraveled the role of the AHP1 gene in the biofilm persistence against amphotericin B. Mol Cell Proteomics 15:3488–3500 - PubMed
  98. Zhigang JS, Haoyue L, Jing C et al (2016) Candida albicans amphotericin B-tolerant persister formation is closely related to surface adhesion. Mycopathologia 181:41–49 - PubMed
  99. Al-Dhaheri RS, Douglas LJ (2008) Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species. Antimicrob Agents Chemother 52:1884–1887 - PubMed
  100. Denega I, D’Enfert C, Bachellier-Bassi S (2019) Candida albicans biofilms are generally devoid of persister cells. Antimicrob Agents Chemother 63:e01979–e01918 - PubMed
  101. Radzikowski JL, Vedelaar S, Siegel D et al (2016) Bacterial persistence is an active σ - PubMed
  102. Balaban NQ (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625 - PubMed
  103. Gefen O, Gabay C, Mumcuoglu M et al (2008) Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci U S A 105:6145–6149 - PubMed
  104. Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8:431–433 - PubMed
  105. Wilmaerts D, Dewachter L, De Loose P-J et al (2019) HokB monomerization and membrane repolarization control persister awakening. Mol Cell 75:1031–1042 - PubMed
  106. Jõers A, Kaldalu N, Tenson T (2010) The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol 192:3379–3384 - PubMed
  107. Luidalepp H, Jõers A, Kaldalu N, Tenson T (2011) Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 193:3598–3605 - PubMed
  108. Orman MA, Brynildsen MP (2013) Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230–3239 - PubMed
  109. Verstraeten N, Knapen WJ, Kint CI et al (2015) Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol Cell 59:9–21 - PubMed
  110. Henry TC, Brynildsen MP (2016) Development of Persister-FACSeq: a method to massively parallelize quantification of persister physiology and its heterogeneity. Sci Rep 6:25100 - PubMed
  111. Sakakihara S, Araki S, Iino R, Noji H (2010) A single-molecule enzymatic assay in a directly accessible femtoliter droplet array. Lab Chip 10:3355–3362 - PubMed
  112. Iino R, Matsumoto Y, Nishino K et al (2013) Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. Front Microbiol 4:300 - PubMed
  113. Harms A, Fino C, Sørensen MA et al (2017) Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio 8:e01964-17 - PubMed
  114. Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562 - PubMed
  115. Ankomah P, Levin BR (2014) Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proc Natl Acad Sci U S A 111:8331–8338 - PubMed
  116. Patra P, Klumpp S (2013) Population dynamics of bacterial persistence. PLoS One 8:e62814 - PubMed
  117. Patra P, Klumpp S (2015) Emergence of phenotype switching through continuous and discontinuous evolutionary transitions. Phys Biol 12:046004 - PubMed
  118. Gardner A, West SA, Griffin AS (2007) Is bacterial persistence a social trait? PLoS One 2:e752 - PubMed
  119. Klapper I, Gilbert P, Ayati BP et al (2007) Senescence can explain microbial persistence. Microbiology 153:3623–3630 - PubMed
  120. Levin-Reisman I, Brauner A, Ronin I, Balaban NQ (2019) Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci 116:14734–14739 - PubMed
  121. Feng J, Kessler DA, Ben-Jacob E, Levine H (2014) Growth feedback as a basis for persister bistability. Proc Natl Acad Sci U S A 111:544–549 - PubMed
  122. Rotem E, Loinger A, Ronin I et al (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107:12541–12546 - PubMed
  123. Lou C, Li Z, Ouyang Q (2008) A molecular model for persister in E. coli. J Theor Biol 255:205–209 - PubMed
  124. Fasani RA, Savageau MA (2013) Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype Proc Natl Acad Sci U S A 110:E2528–E2537 - PubMed
  125. Stepanyan K, Wenseleers T, Duéñez-Guzmán EA et al (2015) Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol Ecol 24:1572–1583 - PubMed
  126. Nguyen D, Joshi-Datar A, Lepine F et al (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–986 - PubMed
  127. Dhar N, Mckinney JD (2010) Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci U S A 107:12275–12280 - PubMed
  128. Chua SL, Kuok J, Yam H et al (2016) Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 7:10750 - PubMed
  129. Briers Y, Walmagh M, Van Puyenbroeck V et al (2014) Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio 5:e01379-14 - PubMed
  130. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220 - PubMed
  131. Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17:4406–4414 - PubMed
  132. Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5:190ra81 - PubMed
  133. Starkey M, Lepine F, Maura D et al (2014) Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 10:e1004321 - PubMed
  134. Lebeaux D, Chauhan A, Létoffé S et al (2014) pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis 210:1357–1366 - PubMed
  135. Defraine V, Verstraete L, Van Bambeke F et al (2017) Antibacterial activity of 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol against antibiotic-resistant strains of diverse bacterial pathogens, biofilms and in pre-clinical infection models. Front Microbiol 8:2585 - PubMed
  136. Stover CK, Warrener P, VanDevanter DR et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966 - PubMed

Publication Types