Display options
Share it on

Kidney Int. 2021 Dec;100(6):1214-1226. doi: 10.1016/j.kint.2021.08.022. Epub 2021 Sep 15.

Kidney toxicity of the BRAF-kinase inhibitor vemurafenib is driven by off-target ferrochelatase inhibition.

Kidney international

Yuntao Bai, Ji Young Kim, Bijay Bisunke, Laura A Jayne, Josie A Silvaroli, Michael S Balzer, Megha Gandhi, Kevin M Huang, Veronika Sander, Jason Prosek, Rachel E Cianciolo, Sharyn D Baker, Alex Sparreboom, Kenar D Jhaveri, Katalin Susztak, Amandeep Bajwa, Navjot Singh Pabla

Affiliations

  1. Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
  2. Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
  3. Department of Medicine and Genetics, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  4. Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
  5. Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
  6. Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.
  7. Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Northwell Health, Great Neck, New York, USA.
  8. Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
  9. Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA. Electronic address: [email protected].

PMID: 34534550 PMCID: PMC8608726 DOI: 10.1016/j.kint.2021.08.022

Abstract

A multitude of disease and therapy related factors drive the frequent development of kidney disorders in cancer patients. Along with chemotherapy, the newer targeted therapeutics can also cause kidney dysfunction through on and off-target mechanisms. Interestingly, among the small molecule inhibitors approved for the treatment of cancers that harbor BRAF-kinase activating mutations, vemurafenib can trigger tubular damage and acute kidney injury. BRAF is a proto-oncogene involved in cell growth. To investigate the underlying mechanisms, we developed cell culture and mouse models of vemurafenib kidney toxicity. At clinically relevant concentrations vemurafenib induces cell-death in transformed and primary mouse and human kidney tubular epithelial cells. In mice, two weeks of daily vemurafenib treatment causes moderate acute kidney injury with histopathological characteristics of kidney tubular epithelial cells injury. Importantly, kidney tubular epithelial cell-specific BRAF gene deletion did not influence kidney function under normal conditions or alter the severity of vemurafenib-associated kidney impairment. Instead, we found that inhibition of ferrochelatase, an enzyme involved in heme biosynthesis contributes to vemurafenib kidney toxicity. Ferrochelatase overexpression protected kidney tubular epithelial cells and conversely ferrochelatase knockdown increased the sensitivity to vemurafenib-induced kidney toxicity. Thus, our studies suggest that vemurafenib-associated kidney tubular epithelial cell dysfunction and kidney toxicity is BRAF-independent and caused, in part, by off-target ferrochelatase inhibition.

Copyright © 2021 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

Keywords: BRAF kinase; acute kidney injury; ferrochelatase; onconephrology; protein kinase inhibitors; renal tubular epithelial cells

References

  1. Am J Med. 1957 Oct;23(4):529-42 - PubMed
  2. Oncologist. 2013;18(3):314-22 - PubMed
  3. Nat Commun. 2016 Mar 16;7:10880 - PubMed
  4. Theranostics. 2018 Mar 8;8(8):2134-2146 - PubMed
  5. J Clin Invest. 2011 Nov;121(11):4210-21 - PubMed
  6. Biochem Pharmacol. 2020 Jul;177:113939 - PubMed
  7. Nat Rev Drug Discov. 2011 Oct 31;10(11):811-2 - PubMed
  8. Cell Metab. 2021 Feb 2;33(2):379-394.e8 - PubMed
  9. Nephron. 2002 Feb;90(2):133-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5231-6 - PubMed
  11. Nat Rev Drug Discov. 2006 Oct;5(10):835-44 - PubMed
  12. J Am Soc Nephrol. 2013 Jan;24(1):26-30 - PubMed
  13. Invest New Drugs. 2016 Oct;34(5):643-9 - PubMed
  14. Lancet. 2020 Jul 25;396(10246):277-287 - PubMed
  15. Am J Med Sci. 1999 Oct;318(4):241-56 - PubMed
  16. Cell Chem Biol. 2018 Feb 15;25(2):175-184.e4 - PubMed
  17. N Engl J Med. 2017 May 4;376(18):1770-1781 - PubMed
  18. J Am Soc Nephrol. 2007 Feb;18(2):414-20 - PubMed
  19. Curr Drug Targets. 2009 Dec;10(12):1196-204 - PubMed
  20. ACS Chem Biol. 2016 May 20;11(5):1245-54 - PubMed
  21. JAMA Oncol. 2015 Nov;1(8):1133-4 - PubMed
  22. Nat Rev Cancer. 2010 Feb;10(2):130-7 - PubMed
  23. Front Immunol. 2020 Jun 23;11:1278 - PubMed
  24. Clin J Am Soc Nephrol. 2019 Dec 6;14(12):1692-1700 - PubMed
  25. Semin Nephrol. 2019 Jan;39(1):76-84 - PubMed
  26. Nat Commun. 2020 Sep 24;11(1):4837 - PubMed
  27. Semin Hematol. 1988 Oct;25(4):336-48 - PubMed
  28. Nat Chem Biol. 2010 Apr;6(4):291-9 - PubMed
  29. Nature. 2002 Jun 27;417(6892):949-54 - PubMed
  30. PLoS One. 2016 Mar 01;11(3):e0149873 - PubMed
  31. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 - PubMed
  32. Clin J Am Soc Nephrol. 2012 Oct;7(10):1692-700 - PubMed
  33. Br J Dermatol. 2013 Oct;169(4):934-8 - PubMed
  34. Nephron. 2017;137(4):260-263 - PubMed
  35. Kidney Int. 2007 Jul;72(2):151-6 - PubMed
  36. J Clin Invest. 1998 Jul 1;102(1):107-14 - PubMed
  37. J Clin Invest. 2002 Sep;110(6):835-42 - PubMed
  38. Science. 2014 Oct 3;346(6205):1255784 - PubMed
  39. Clin Cancer Res. 2017 Jul 15;23(14):3489-3498 - PubMed
  40. Cancer Chemother Pharmacol. 2017 May;79(5):1043-1049 - PubMed
  41. Cell Chem Biol. 2018 Feb 15;25(2):126-127 - PubMed
  42. Nat Rev Drug Discov. 2012 Nov;11(11):873-86 - PubMed
  43. J Biol Chem. 1998 Feb 13;273(7):4135-42 - PubMed
  44. J Biol Chem. 2020 Nov 27;295(48):16328-16341 - PubMed
  45. Clin J Am Soc Nephrol. 2012 Oct;7(10):1701-12 - PubMed
  46. J Eur Acad Dermatol Venereol. 2014 Jul;28(7):978-9 - PubMed
  47. J Am Coll Cardiol. 2013 May 7;61(18):1884-93 - PubMed
  48. Cancer Discov. 2019 Mar;9(3):329-341 - PubMed
  49. Semin Nephrol. 2010 Nov;30(6):548-56 - PubMed
  50. Nat Commun. 2020 Apr 21;11(1):1924 - PubMed
  51. Nature. 2010 Sep 30;467(7315):596-9 - PubMed
  52. CA Cancer J Clin. 2021 Jan;71(1):47-77 - PubMed
  53. Kidney Int. 2008 May;73(9):994-1007 - PubMed
  54. Nature. 2010 Mar 18;464(7287):431-5 - PubMed
  55. Hypertension. 2016 Jul;68(1):17-23 - PubMed
  56. Cancer Res. 2012 Feb 1;72(3):779-89 - PubMed
  57. Cancer Chemother Pharmacol. 2016 Aug;78(2):419-26 - PubMed
  58. Nat Rev Nephrol. 2017 Oct;13(10):629-646 - PubMed
  59. Am J Kidney Dis. 2020 Jan;75(1):A15-A18 - PubMed
  60. Am J Kidney Dis. 2014 Jan;63(1):23-30 - PubMed
  61. J Neurosci Res. 2006 Jan;83(1):28-38 - PubMed
  62. Int J Mol Sci. 2021 May 20;22(10): - PubMed
  63. J Clin Invest. 2002 Aug;110(3):341-50 - PubMed
  64. Pharmacol Res Perspect. 2015 Mar;3(2):e00113 - PubMed
  65. Semin Nephrol. 2016 Jan;36(1):62-70 - PubMed
  66. Lancet. 2012 Aug 25;380(9843):756-66 - PubMed
  67. Lancet. 2012 Jul 28;380(9839):358-65 - PubMed
  68. Nat Rev Cancer. 2014 Jul;14(7):455-67 - PubMed
  69. Cell Rep. 2015 Aug 25;12(8):1325-38 - PubMed
  70. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):197-202 - PubMed
  71. J Clin Invest. 2015 May;125(5):1780-9 - PubMed
  72. Kidney Int. 2016 Sep;90(3):706-7 - PubMed

Publication Types

Grant support