Display options
Share it on

Metabolites. 2021 Sep 21;11(9). doi: 10.3390/metabo11090644.

An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues.

Metabolites

Tara J Bowen, Andrew R Hall, Gavin R Lloyd, Ralf J M Weber, Amanda Wilson, Amy Pointon, Mark R Viant

Affiliations

  1. School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
  2. Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK.
  3. Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
  4. Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, UK.

PMID: 34564460 PMCID: PMC8470535 DOI: 10.3390/metabo11090644

Abstract

Discovering modes of action and predictive biomarkers of drug-induced structural cardiotoxicity offers the potential to improve cardiac safety assessment of lead compounds and enhance preclinical to clinical translation during drug development. Cardiac microtissues are a promising, physiologically relevant, in vitro model, each composed of ca. 500 cells. While untargeted metabolomics is capable of generating hypotheses on toxicological modes of action and discovering metabolic biomarkers, applying this technology to low-biomass microtissues in suspension is experimentally challenging. Thus, we first evaluated a filtration-based approach for harvesting microtissues and assessed the sensitivity and reproducibility of nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) measurements of intracellular extracts, revealing samples consisting of 28 pooled microtissues, harvested by filtration, are suitable for profiling the intracellular metabolome and lipidome. Subsequently, an extensive workflow combining nESI-DIMS untargeted metabolomics and lipidomics of intracellular extracts with ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analysis of spent culture medium, to profile the metabolic footprint and quantify drug exposure concentrations, was implemented. Using the synthetic drug and model cardiotoxin sunitinib, time-resolved metabolic and lipid perturbations in cardiac microtissues were investigated, providing valuable data for generating hypotheses on toxicological modes of action and identifying putative biomarkers such as disruption of purine metabolism and perturbation of polyunsaturated fatty acid levels.

Keywords: biomarkers; cardiac microtissues; cardiotoxicity; in vitro metabolomics; mode of action; sample harvesting; sensitivity; untargeted toxicokinetics

References

  1. Analyst. 2009 Mar;134(3):478-85 - PubMed
  2. PLoS One. 2012;7(5):e38147 - PubMed
  3. Methods Mol Biol. 2018;1741:125-134 - PubMed
  4. Cell Rep. 2016 Dec 20;17(12):3292-3304 - PubMed
  5. Arch Toxicol. 2016 Aug;90(8):1803-16 - PubMed
  6. Anal Bioanal Chem. 2013 Jun;405(15):5147-57 - PubMed
  7. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617 - PubMed
  8. Toxicol Sci. 2013 Apr;132(2):317-26 - PubMed
  9. Bioinformatics. 2020 Dec 16;: - PubMed
  10. Metabolomics. 2009 Dec;5(4):407-418 - PubMed
  11. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  12. J Cardiovasc Pharmacol. 2016 Apr;67(4):283-9 - PubMed
  13. Arch Toxicol. 2018 Oct;92(10):3007-3029 - PubMed
  14. Sci Rep. 2018 Jul 5;8(1):10160 - PubMed
  15. Nat Protoc. 2016 Feb;12(2):310–328 - PubMed
  16. Nat Biotechnol. 2012 Oct;30(10):918-20 - PubMed
  17. Arch Toxicol. 2016 Nov;90(11):2763-2777 - PubMed
  18. Anal Chem. 2006 Feb 1;78(3):779-87 - PubMed
  19. Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9 - PubMed
  20. Arch Toxicol. 2018 Feb;92(2):893-906 - PubMed
  21. Toxicol Sci. 2019 Feb 1;167(2):307-321 - PubMed
  22. BMC Med. 2016 Feb 04;14:10 - PubMed
  23. Methods Mol Biol. 2007;406:409-36 - PubMed
  24. Toxicol Sci. 2020 Apr 1;174(2):218-240 - PubMed
  25. Sci Rep. 2017 Nov 10;7(1):15285 - PubMed
  26. Metabolites. 2020 May 07;10(5): - PubMed
  27. Environ Sci Technol. 2014 May 20;48(10):5946-54 - PubMed
  28. Br J Pharmacol. 2010 Jan;159(1):12-21 - PubMed
  29. Br J Pharmacol. 2011 Jun;163(4):675-93 - PubMed
  30. Nat Commun. 2019 Jul 10;10(1):3041 - PubMed
  31. Toxicol Sci. 2017 Feb;155(2):444-457 - PubMed
  32. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55 - PubMed
  33. J Proteome Res. 2021 Jan 1;20(1):831-840 - PubMed
  34. Nat Rev Drug Discov. 2014 Jun;13(6):419-31 - PubMed
  35. Toxicol Appl Pharmacol. 2015 May 15;285(1):51-60 - PubMed
  36. Development. 2017 Mar 15;144(6):1008-1017 - PubMed
  37. J Biomed Sci. 2014 Nov 18;21:101 - PubMed
  38. J Appl Toxicol. 2013 Dec;33(12):1365-83 - PubMed
  39. Toxicol Sci. 2017 Aug 1;158(2):252-262 - PubMed
  40. Nat Rev Drug Discov. 2016 Jul;15(7):457-71 - PubMed
  41. Nucleic Acids Res. 2007 Jan;35(Database issue):D527-32 - PubMed
  42. PLoS One. 2016 Jul 20;11(7):e0159389 - PubMed
  43. J Proteome Res. 2015 Jun 5;14(6):2437-45 - PubMed
  44. Toxicol Sci. 2015 Apr;144(2):227-37 - PubMed
  45. ALTEX. 2013;30(2):209-25 - PubMed
  46. Nat Commun. 2020 Jun 24;11(1):3186 - PubMed

Publication Types

Grant support