Display options
Share it on

Chem Biol Drug Des. 2021 Sep 30; doi: 10.1111/cbdd.13966. Epub 2021 Sep 30.

A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry.

Chemical biology & drug design

Bhavna Saroha, Gourav Kumar, Ramesh Kumar, Meena Kumari, Suresh Kumar

Affiliations

  1. Department of Chemistry, Kurukshetra University, Kurukshetra, India.
  2. Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India.

PMID: 34592059 DOI: 10.1111/cbdd.13966

Abstract

Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.

© 2021 John Wiley & Sons Ltd.

Keywords: 1,2,3-triazole; biological activities; hybrid compounds; oxygen heterocycles; structure-activity relationship

References

  1. Abdellatif, K. R., & Bakr, R. B. (2018). New advances in synthesis and clinical aspects of pyrazolo [3, 4-d] pyrimidine scaffolds. Bioorganic Chemistry, 78, 341-357. https://doi.org/10.1016/j.bioorg.2018.03.032 - PubMed
  2. Abedinifar, F., Farnia, S. M. F., Hosseinihashemi, S. K., Jalaligoldeh, A., Arabahmadi, S., & Mahdavi, M. (2020). Design and synthesis of new benzofuran-1, 2, 3-triazole hybrid preservatives and the evaluation of their antifungal potential against white and brown-rot fungi. BioResources, 15(4), 7828-7843. https://doi.org/10.15376/biores.15.4.7828-7843 - PubMed
  3. Ahmad, S., Alam, O., Naim, M. J., Shaquiquzzaman, M., Alam, M. M., & Iqbal, M. (2018). Pyrrole: An insight into recent pharmacological advances with structure activity relationship. European Journal of Medicinal Chemistry, 157, 527-561. https://doi.org/10.1016/j.ejmech.2018.08.002 - PubMed
  4. Akolkar, S. V., Nagargoje, A. A., Shaikh, M. H., Warshagha, M. Z., Sangshetti, J. N., Damale, M. G., & Shingate, B. B. (2020). New N-phenylacetamide-linked 1, 2, 3-triazole-tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Archiv Der Pharmazie, 353(11), 2000164. https://doi.org/10.1002/ardp.202000164 - PubMed
  5. Alam, S., & Khan, F. (2019). 3D-QSAR, docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-41984-7 - PubMed
  6. Alhassan, A. M., Ahmed, Q. U., Latip, J., & Shah, S. A. A. (2019). A new sulphated flavone and other phytoconstituents from the leaves of Tetracera indica Merr. and their alpha-glucosidase inhibitory activity. Natural Product Research, 33(1), 1-8. https://doi.org/10.1080/14786419.2018.1437427 - PubMed
  7. Alminderej, F. M., Elganzory, H. H., El-Bayaa, M. N., Awad, H. M., & El-Sayed, W. A. (2019). Synthesis and cytotoxic activity of new 1, 3, 4-thiadiazole thioglycosides and 1, 2, 3-triazolyl-1, 3, 4-thiadiazole N-glycosides. Molecules, 24(20), 3738. https://doi.org/10.3390/molecules24203738 - PubMed
  8. Amdouni, H., Robert, G., Driowya, M., Furstoss, N., Métier, C., Dubois, A., Dufies, M., Zerhouni, M., Orange, F., Lacas-Gervais, S., Bougrin, K., Martin, A. R., Auberger, P., & Benhida, R. (2017). In vitro and in vivo evaluation of fully substituted (5-(3-ethoxy-3-oxopropynyl)-4-(ethoxycarbonyl)-1, 2, 3-triazolyl-glycosides as original nucleoside analogues to circumvent resistance in myeloid malignancies. Journal of Medicinal Chemistry, 60(4), 1523-1533. https://doi.org/10.1021/acs.jmedchem.6b01803 - PubMed
  9. Aouad, M. (2016). Synthesis and antimicrobial screening of novel thioglycosides and acyclonucleoside analogs carrying 1, 2, 3-triazole and 1, 3, 4-oxadiazole moieties. Nucleosides, Nucleotides & Nucleic Acids, 35(1), 1-15. https://doi.org/10.1080/15257770.2015.1109098 - PubMed
  10. Araniti, F., Mancuso, R., Lupini, A., Sunseri, F., Abenavoli, M. R., & Gabriele, B. (2020). Benzofuran-2-acetic esters as a new class of natural-like herbicides. Pest Management Science, 76(1), 395-404. https://doi.org/10.1002/ps.5528 - PubMed
  11. Asgari, M. S., Mohammadi-Khanaposhtani, M., Kiani, M., Ranjbar, P. R., Zabihi, E., Pourbagher, R., Rahimi, R., Faramarzi, M. A., Biglar, M., & Larijani, B. (2019). Biscoumarin-1, 2, 3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorganic Chemistry, 92, 103206. https://doi.org/10.1016/j.bioorg.2019.103206 - PubMed
  12. Ashour, H. F., Abou-zeid, L. A., Magda, A.-A., & Selim, K. B. (2020). 1, 2, 3-triazole-chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. European Journal of Medicinal Chemistry, 189, 112062. https://doi.org/10.1016/j.ejmech.2020.112062 - PubMed
  13. Aslan, H. E., Demir, Y., Özaslan, M. S., Türkan, F., Beydemir, Ş., & Küfrevioğlu, Ö. I. (2019). The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug and Chemical Toxicology, 42(6), 634-640. https://doi.org/10.1080/01480545.2018.1463242 - PubMed
  14. Bakka, T. A., Strøm, M. B., Andersen, J. H., & Gautun, O. R. (2017). Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles. Bioorganic & Medicinal Chemistry Letters, 27(5), 1119-1123. https://doi.org/10.1016/j.bmcl.2017.01.092 - PubMed
  15. Batra, N., Rajendran, V., Agarwal, D., Wadi, I., Ghosh, P. C., Gupta, R. D., & Nath, M. (2018). Synthesis and antimalarial evaluation of [1, 2, 3]-triazole-tethered sulfonamide-berberine hybrids. ChemistrySelect, 3(34), 9790-9793. https://doi.org/10.1002/slct.201801905 - PubMed
  16. Bębenek, E., Jastrzębska, M., Kadela-Tomanek, M., Chrobak, E., Orzechowska, B., Zwolińska, K., Latocha, M., Mertas, A., Czuba, Z., & Boryczka, S. (2017). Novel triazole hybrids of betulin: Synthesis and biological activity profile. Molecules, 22(11), 1876. https://doi.org/10.3390/molecules22111876 - PubMed
  17. Bhagat, K., Bhagat, J., Gupta, M. K., Singh, J. V., Gulati, H. K., Singh, A., Kaur, K., Kaur, G., Sharma, S., & Rana, A. (2019). Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega, 4(5), 8720-8730. https://doi.org/10.1021/acsomega.8b02481 - PubMed
  18. Bian, J., Ren, J., Li, Y., Wang, J., Xu, X., Feng, Y., Tang, H., Wang, Y., & Li, Z. (2018). Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorganic Chemistry, 81, 373-381. https://doi.org/10.1016/j.bioorg.2018.08.028 - PubMed
  19. Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G., & Passarella, D. (2017). The 1, 2, 3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today, 22(10), 1572-1581. https://doi.org/10.1016/j.drudis.2017.05.014 - PubMed
  20. Boshra, A. N., Abdu-Allah, H. H., Mohammed, A. F., & Hayallah, A. M. (2020). Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorganic Chemistry, 95, 103505. https://doi.org/10.1016/j.bioorg.2019.103505 - PubMed
  21. Bozorov, K., Nie, L. F., Zhao, J., & Aisa, H. A. (2017). 2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. European Journal of Medicinal Chemistry, 140, 465-493. https://doi.org/10.1016/j.ejmech.2017.09.039 - PubMed
  22. Bozorov, K., Zhao, J., & Aisa, H. A. (2019). 1, 2, 3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorganic & Medicinal Chemistry, 27(16), 3511-3531. https://doi.org/10.1016/j.bmc.2019.07.005 - PubMed
  23. Bozorov, K., Zhao, J.-Y., Elmuradov, B., Pataer, A., & Aisa, H. A. (2015). Recent developments regarding the use of thieno [2, 3-d] pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. European Journal of Medicinal Chemistry, 102, 552-573. https://doi.org/10.1016/j.ejmech.2015.08.018 - PubMed
  24. Bozorov, K., Zhao, J., Nie, L. F., Ma, H.-R., Bobakulov, K., Hu, R., Rustamova, N., Huang, G., Efferth, T., & Aisa, H. A. (2017). Synthesis and in vitro biological evaluation of novel diaminothiophene scaffolds as antitumor and anti-influenza virus agents. Part 2. RSC Advances, 7(50), 31417-31427. https://doi.org/10.1039/C7RA04808D - PubMed
  25. Calderon, A., Soldan, S. S., De Leo, A., Deng, Z., Frase, D. M., Anderson, E. M., Zhang, Y., Vladimirova, O., Lu, F., Leung, J. C., Murphy, M. E., & Lieberman, P. M. (2020). Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget, 11(46), 4224-4242. https://doi.org/10.18632/oncotarget.27815 - PubMed
  26. Canonico, P., Jahrling, P., & Pannier, W. (1982). Antiviral efficacy of pyrazofurin against selected RNA viruses. Antiviral Research, 2(6), 331-337. https://doi.org/10.1016/0166-3542(82)90002-X - PubMed
  27. Castaño, L. F., Cuartas, V., Bernal, A., Insuasty, A., Guzman, J., Vidal, O., Rubio, V., Puerto, G., Lukáč, P., & Vimberg, V. (2019). New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. European Journal of Medicinal Chemistry, 176, 50-60. https://doi.org/10.1016/j.ejmech.2019.05.013 - PubMed
  28. Ceyhan, B., & Karakurt, S. (2002). Effect of oxolamine on cough sensitivity in COPD patients. Respiratory Medicine, 96(1), 61-63. https://doi.org/10.1053/rmed.2001.1199 - PubMed
  29. Cid, E., Yamamoto, M., & Yamamoto, F. (2019). Amino acid substitutions at sugar-recognizing codons confer ABO blood group system-related α1, 3 Gal (NAc) transferases with differential enzymatic activity. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-018-37515-5 - PubMed
  30. Dadmal, T. L., Appalanaidu, K., Kumbhare, R. M., Mondal, T., Ramaiah, M. J., & Bhadra, M. P. (2018). Synthesis and biological evaluation of triazole and isoxazole-tagged benzothiazole/benzoxazole derivatives as potent cytotoxic agents. New Journal of Chemistry, 42(19), 15546-15551. https://doi.org/10.1039/C8NJ01249K - PubMed
  31. Delost, M. D., Smith, D. T., Anderson, B. J., & Njardarson, J. T. (2018). From oxiranes to oligomers: Architectures of US FDA approved pharmaceuticals containing oxygen heterocycles. Journal of Medicinal Chemistry, 61(24), 10996-11020. https://doi.org/10.1021/acs.jmedchem.8b00876 - PubMed
  32. Desai, N., Trivedi, A., Pandit, U., Dodiya, A., Kameswara Rao, V., & Desai, P. (2016). Hybrid bioactive heterocycles as potential antimicrobial agents: a review. Mini Reviews in Medicinal Chemistry, 16(18), 1500-1526. https://doi.org/10.2174/1389557516666160609075620 - PubMed
  33. Deswal, S., Tittal, R. K., Vikas, D. G., Lal, K., & Kumar, A. (2020). 5-Fluoro-1H-indole-2, 3-dione-triazoles-synthesis, biological activity, molecular docking, and DFT study. Journal of Molecular Structure, 1209, 127982. https://doi.org/10.1016/j.molstruc.2020.127982 - PubMed
  34. Dhawan, S., Awolade, P., Kisten, P., Cele, N., Pillay, A. S., Saha, S., Kaur, M., Jonnalagadda, S. B., & Singh, P. (2020). Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged β-lactam triazole hybrid. Chemistry & Biodiversity, 17(1), e1900462. https://doi.org/10.1002/cbdv.201900462 - PubMed
  35. Dheer, D., Singh, V., & Shankar, R. (2017). Medicinal attributes of 1, 2, 3-triazoles: Current developments. Bioorganic Chemistry, 71, 30-54. https://doi.org/10.1016/j.bioorg.2017.01.010 - PubMed
  36. Djemoui, A., Naouri, A., Ouahrani, M. R., Djemoui, D., Lahcene, S., Lahrech, M. B., Boukenna, L., Albuquerque, H. M., Saher, L., & Rocha, D. H. (2020). A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. Journal of Molecular Structure, 1204, 127487. https://doi.org/10.1016/j.molstruc.2019.127487 - PubMed
  37. Emami, S., Ghobadi, E., Saednia, S., & Hashemi, S. M. (2019). Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. European Journal of Medicinal Chemistry, 170, 173-194. https://doi.org/10.1016/j.ejmech.2019.03.020 - PubMed
  38. Fjellaksel, R., Sundset, R., Riss, P. J., & Hansen, J. H. (2018). Copper-mediated late-stage iodination and 123I-labelling of triazole-benzimidazole bioactives. Synlett, 29(11), 1491-1495. https://doi.org/10.1055/s-0036-1591985 - PubMed
  39. Fu, D.-J., Zhang, S.-Y., Liu, Y.-C., Yue, X.-X., Liu, J.-J., Song, J., Zhao, R.-H., Li, F., Sun, H.-H., & Zhang, Y.-B. (2016). Design, synthesis and antiproliferative activity studies of 1, 2, 3-triazole-chalcones. MedChemComm, 7(8), 1664-1671. https://doi.org/10.1039/C6MD00169F - PubMed
  40. Fu, Y., Zhang, D., Kang, T., Guo, Y.-Y., Chen, W.-G., Gao, S., & Ye, F. (2019). Fragment splicing-based design, synthesis and safener activity of novel substituted phenyl oxazole derivatives. Bioorganic & Medicinal Chemistry Letters, 29(4), 570-576. https://doi.org/10.1016/j.bmcl.2018.12.061 - PubMed
  41. Gao, C., Chang, L., Xu, Z., Yan, X.-F., Ding, C., Zhao, F., Wu, X., & Feng, L.-S. (2019). Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. European Journal of Medicinal Chemistry, 163, 404-412. https://doi.org/10.1016/j.ejmech.2018.12.001 - PubMed
  42. Gao, F., Zhang, X., Wang, T., & Xiao, J. (2019). Quinolone hybrids and their anti-cancer activities: An overview. European Journal of Medicinal Chemistry, 165, 59-79. https://doi.org/10.1016/j.ejmech.2019.01.017 - PubMed
  43. Giacobbe, D. R., Bassetti, M., De Rosa, F. G., Del Bono, V., Grossi, P. A., Menichetti, F., Pea, F., Rossolini, G. M., Tumbarello, M., & Viale, P. (2018). Ceftolozane/tazobactam: Place in therapy. Expert Review of Anti-infective Therapy, 16(4), 307-320. https://doi.org/10.1080/14787210.2018.1447381 - PubMed
  44. Gonzalez, C., Sanchez, A., Collins, J., Lisova, K., Lee, J. T., van Dam, R. M., Barbieri, M. A., Ramachandran, C., & Wnuk, S. F. (2018). The 4-N-acyl and 4-N-alkyl gemcitabine analogues with silicon-fluoride-acceptor: Application to 18F-Radiolabeling. European Journal of Medicinal Chemistry, 148, 314-324. https://doi.org/10.1016/j.ejmech.2018.02.017 - PubMed
  45. Goud, N. S., Pooladanda, V., Mahammad, G. S., Jakkula, P., Gatreddi, S., Qureshi, I. A., Alvala, R., Godugu, C., & Alvala, M. (2019). Synthesis and biological evaluation of morpholines linked coumarin-triazole hybrids as anticancer agents. Chemical Biology & Drug Design, 94(5), 1919-1929. https://doi.org/10.1111/cbdd.13578 - PubMed
  46. Guan, D., Chen, F., Xiong, L., Tang, F., Qiu, Y., Zhang, N., Gong, L., Li, J., Lan, L., & Huang, W. (2018). Extra sugar on vancomycin: new analogues for combating multidrug-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Journal of Medicinal Chemistry, 61(1), 286-304. https://doi.org/10.1021/acs.jmedchem.7b01345 - PubMed
  47. Gurrapu, N., Kumar, E. P., Kolluri, P. K., Putta, S., Sivan, S. K., & Subhashini, N. (2020). Synthesis, biological evaluation and molecular docking studies of novel 1, 2, 3-triazole tethered chalcone hybrids as potential anticancer agents. Journal of Molecular Structure, 1217, 128356. https://doi.org/10.1016/j.molstruc.2020.128356 - PubMed
  48. Hou, W., Zhang, G., Luo, Z., Su, L., & Xu, H. (2019). Click chemistry-based synthesis and cytotoxic activity evaluation of 4α-triazole acetate podophyllotoxin derivatives. Chemical Biology & Drug Design, 93(4), 473-483. https://doi.org/10.1111/cbdd.13436 - PubMed
  49. Hu, X.-L., Xu, Z., Liu, M.-L., Feng, L.-S., & Zhang, G.-D. (2017). Recent developments of coumarin hybrids as anti-fungal agents. Current Topics in Medicinal Chemistry, 17(29), 3219-3231. https://doi.org/10.2174/1568026618666171215100326 - PubMed
  50. Hu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X., & Zhao, F. (2017). Quinoline hybrids and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 139, 22-47. https://doi.org/10.1016/j.ejmech.2017.07.061 - PubMed
  51. Hu, Y.-Q., Xu, Z., Zhang, S., Wu, X., Ding, J.-W., Lv, Z.-S., & Feng, L.-S. (2017). Recent developments of coumarin-containing derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry, 136, 122-130. https://doi.org/10.1016/j.ejmech.2017.05.004 - PubMed
  52. Jalili-Baleh, L., Nadri, H., Forootanfar, H., Samzadeh-Kermani, A., Küçükkılınç, T. T., Ayazgok, B., Rahimifard, M., Baeeri, M., Doostmohammadi, M., & Firoozpour, L. (2018). Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease. Bioorganic Chemistry, 79, 223-234. https://doi.org/10.1016/j.bioorg.2018.04.030 - PubMed
  53. Ju, R., Guo, L., Li, J., Zhu, L., Yu, X., Chen, C., Chen, W., Ye, C., & Zhang, D. (2016). Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition. Cancer Letters, 370(2), 232-241. https://doi.org/10.1016/j.canlet.2015.10.025 - PubMed
  54. Kamal, A., Hussaini, S. A., Sucharitha, M. L., Poornachandra, Y., Sultana, F., & Kumar, C. G. (2015). Synthesis and antimicrobial potential of nitrofuran-triazole congeners. Organic & Biomolecular Chemistry, 13(36), 9388-9397. https://doi.org/10.1039/C5OB01353D - PubMed
  55. Kant, R., Kumar, D., Agarwal, D., Gupta, R. D., Tilak, R., Awasthi, S. K., & Agarwal, A. (2016). Synthesis of newer 1, 2, 3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. European Journal of Medicinal Chemistry, 113, 34-49. https://doi.org/10.1016/j.ejmech.2016.02.041 - PubMed
  56. Kaoukabi, H., Kabri, Y., Curti, C., Taourirte, M., Rodriguez-Ubis, J. C., Snoeck, R., Andrei, G., Vanelle, P., & Lazrek, H. B. (2018). Dihydropyrimidinone/1, 2, 3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. European Journal of Medicinal Chemistry, 155, 772-781. https://doi.org/10.1016/j.ejmech.2018.06.028 - PubMed
  57. Kapkoti, D. S., Singh, S., Luqman, S., & Bhakuni, R. S. (2018). Synthesis of novel 1, 2, 3-triazole based artemisinin derivatives and their antiproliferative activity. New Journal of Chemistry, 42(8), 5978-5995. https://doi.org/10.1039/C7NJ04271J - PubMed
  58. Kashid, B. B., Salunkhe, P. H., Dongare, B. B., More, K. R., Khedkar, V. M., & Ghanwat, A. A. (2020). Synthesis of novel of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study. Bioorganic & Medicinal Chemistry Letters, 30(12), 127136. https://doi.org/10.1016/j.bmcl.2020.127136 - PubMed
  59. Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Garg, V. K., Buttar, H. S., Setzer, W. N., & Sethi, G. (2018). Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. Journal of Functional Foods, 48, 457-471. https://doi.org/10.1016/j.jff.2018.07.037 - PubMed
  60. Kaushik, C., Luxmi, R., Singh, D., & Kumar, A. (2017). Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Molecular Diversity, 21(1), 137-145. https://doi.org/10.1007/s11030-016-9710-y - PubMed
  61. Keri, R. S., Patil, S. A., Budagumpi, S., & Nagaraja, B. M. (2015). Triazole: A promising antitubercular agent. Chemical Biology & Drug Design, 86(4), 410-423. https://doi.org/10.1111/cbdd.12527 - PubMed
  62. Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. (2020). A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909 - PubMed
  63. Khanam, H. (2015). Bioactive Benzofuran derivatives: A review. European Journal of Medicinal Chemistry, 97, 483-504. https://doi.org/10.1016/j.ejmech.2014.11.039 - PubMed
  64. Kitamura, T., Okuyama, M., Takahashi, D., & Toshima, K. (2019). 2-Phenylquinoline-sugar hybrids as photoswitchable α-glucosidase inhibitors. Chemistry - an Asian Journal, 14(9), 1409-1412. https://doi.org/10.1002/asia.201900203 - PubMed
  65. Krishna, B. R., Thummuri, D., Naidu, V., Ramakrishna, S., & Mallavadhani, U. V. (2018). Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway. Bioorganic Chemistry, 78, 94-102. https://doi.org/10.1016/j.bioorg.2018.03.005 - PubMed
  66. Kumar, A. K., Sunitha, V., Shankaraiah, P., Siddhartha, M., & Jalapathi, P. (2018). Synthesis and antibacterial activity of some {6-[(1 H-1, 2, 3-Triazol-4-yl) methoxy]-3-methylbenzofuran-2-yl}(4-bromophenyl) methanone derivatives. Russian Journal of General Chemistry, 88(4), 789-796. https://doi.org/10.1134/S1070363218040254 - PubMed
  67. Kumar, K. A., Kalluraya, B., & Kumar, S. M. (2018). Synthesis and in-vitro antioxidant activities of some coumarin derivatives containing 1, 2, 3-triazole ring. Phosphorus Sulfur Silicon and the Related Elements, 193(5), 294-299. https://doi.org/10.1080/10426507.2017.1417293 - PubMed
  68. Kumar, P. P., Siva, B., Rao, B. V., Kumar, G. D., Nayak, V. L., Jain, S. N., Tiwari, A. K., Purushotham, U., Rao, C. V., & Babu, K. S. (2019). Synthesis and biological evaluation of bergenin-1, 2, 3-triazole hybrids as novel class of anti-mitotic agents. Bioorganic Chemistry, 91, 103161. https://doi.org/10.1016/j.bioorg.2019.103161 - PubMed
  69. Kumar, S., Sharma, B., Mehra, V., & Kumar, V. (2021). Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. European Journal of Medicinal Chemistry, 212, 113069. https://doi.org/10.1016/j.ejmech.2020.113069 - PubMed
  70. Lal, K., Kumar, L., Kumar, A., & Kumar, A. (2018). Oxazolone-1, 2, 3-triazole hybrids: Design, synthesis and antimicrobial evaluation. Current Topics in Medicinal Chemistry, 18(17), 1506-1513. https://doi.org/10.2174/1568026618666180913110456 - PubMed
  71. Lal, K., & Yadav, P. (2018). Recent advancements in 1, 4-disubstituted 1H-1, 2, 3-triazoles as potential anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 18(1), 21-37. https://doi.org/10.2174/1871520616666160811113531 - PubMed
  72. Lal, K., Yadav, P., Kumar, A., Kumar, A., & Paul, A. K. (2018). Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1, 2, 3-triazole hybrids. Bioorganic Chemistry, 77, 236-244. https://doi.org/10.1016/j.bioorg.2018.01.016 - PubMed
  73. Lang, D. K., Kaur, R., Arora, R., Saini, B., & Arora, S. (2020). Nitrogen-containing heterocycles as anticancer agents: An overview. Anti-Cancer Agents in Medicinal Chemistry, 20(18), 2150-2168. https://doi.org/10.2174/1871520620666200705214917 - PubMed
  74. Li, H.-N., Wang, H., Wang, Z.-P., Yan, H.-N., Zhang, M., Liu, Y., & Cheng, M.-S. (2018). Synthesis, antitumor activity evaluation and mechanistic study of novel hederacolchiside A1 derivatives bearing an aryl triazole moiety. Bioorganic & Medicinal Chemistry, 26(14), 4025-4033. https://doi.org/10.1016/j.bmc.2018.06.026 - PubMed
  75. Liang, Z., Xu, H., Tian, Y., Guo, M., Su, X., & Guo, C. (2016). Design, synthesis and antifungal activity of novel benzofuran-triazole hybrids. Molecules, 21(6), 732. https://doi.org/10.3390/molecules21060732 - PubMed
  76. Lipeeva, A. V., Zakharov, D. O., Burova, L. G., Frolova, T. S., Baev, D. S., Shirokikh, I. V., Evstropov, A. N., Sinitsyna, O. I., Tolsikova, T. G., & Shults, E. E. (2019). Design, synthesis and antibacterial activity of coumarin-1, 2, 3-triazole hybrids obtained from natural furocoumarin peucedanin. Molecules, 24(11), 2126. https://doi.org/10.3390/molecules24112126 - PubMed
  77. López-Rojas, P., Janeczko, M., Kubiński, K., Amesty, Á., Masłyk, M., & Estévez-Braun, A. (2018). Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules, 23(1), 199. https://doi.org/10.3390/molecules23010199 - PubMed
  78. Luo, Z., Rosenberg, A. J., Liu, H., Han, J., & Tu, Z. (2018). Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents. European Journal of Medicinal Chemistry, 150, 796-808. https://doi.org/10.1016/j.ejmech.2018.03.035 - PubMed
  79. MacLean, L., Karcz, D., Jenkins, H., McClean, S., Devereux, M., Howe, O., Pereira, M. D., May, N. V., Enyedy, É. A., & Creaven, B. S. (2019). Copper (II) complexes of coumarin-derived Schiff base ligands: Pro-or antioxidant activity in MCF-7 cells? Journal of Inorganic Biochemistry, 197, 110702. https://doi.org/10.1016/j.jinorgbio.2019.110702 - PubMed
  80. Madhavilatha, B., Bhattacharjee, D., Sabitha, G., Reddy, B. S., Yadav, J., Jain, N., & Reddy, B. J. M. (2018). Synthesis and in vitro anticancer activity of novel 1, 3, 4-oxadiazole-linked 1, 2, 3-triazole/isoxazole hybrids. Journal of Heterocyclic Chemistry, 55(4), 863-870. https://doi.org/10.1002/jhet.3110 - PubMed
  81. Mahmoud, W. R., Nissan, Y. M., Elsawah, M. M., Refaey, R. H., Ragab, M. F., & Amin, K. M. (2019). Neurobehavioral investigation and acetylcholinesterase inhibitory activity study for some new coumarin derivatives. European Journal of Medicinal Chemistry, 182, 111651. https://doi.org/10.1016/j.ejmech.2019.111651 - PubMed
  82. Majumdar, P., Pati, A., Patra, M., Behera, R. K., & Behera, A. K. (2014). Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chemical Reviews, 114(5), 2942-2977. https://doi.org/10.1021/cr300122t - PubMed
  83. Malkowski, S. N., Dishuck, C. F., Lamanilao, G. G., Embry, C. P., Grubb, C. S., Cafiero, M., & Peterson, L. W. (2017). Design, modeling and synthesis of 1, 2, 3-triazole-linked nucleoside-amino acid conjugates as potential antibacterial agents. Molecules, 22(10), 1682. https://doi.org/10.3390/molecules22101682 - PubMed
  84. Meunier, B. (2008). Hybrid molecules with a dual mode of action: Dream or reality? Accounts of Chemical Research, 41(1), 69-77. https://doi.org/10.1021/ar7000843 - PubMed
  85. Mishra, S., & Singh, P. (2016). Hybrid molecules: The privileged scaffolds for various pharmaceuticals. European Journal of Medicinal Chemistry, 124, 500-536. https://doi.org/10.1016/j.ejmech.2016.08.039 - PubMed
  86. Mistry, B., Patel, R. V., & Keum, Y.-S. (2017). Access to the substituted benzyl-1, 2, 3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arabian Journal of Chemistry, 10(2), 157-166. https://doi.org/10.1016/j.arabjc.2015.10.004 - PubMed
  87. Mohammad, Y., Fazili, K. M., Bhat, K. A., & Ara, T. (2017). Synthesis and biological evaluation of novel 3-O-tethered triazoles of diosgenin as potent antiproliferative agents. Steroids, 118, 1-8. https://doi.org/10.1016/j.steroids.2016.11.003 - PubMed
  88. Mohan, C. D., Anilkumar, N. C., Rangappa, S., Shanmugam, M. K., Mishra, S., Chinnathambi, A., Alharbi, S. A., Bhattacharjee, A., Sethi, G., & Kumar, A. P. (2018). Novel 1, 3, 4-oxadiazole induces anticancer activity by targeting NF-κB in hepatocellular carcinoma cells. Frontiers in Oncology, 8, 42. https://doi.org/10.3389/fonc.2018.00042 - PubMed
  89. Mullins, J. D., & Macek, T. J. (1960). Some pharmaceutical properties of novobiocin. Journal of the American Pharmacists Association, 49(4), 245-248. https://doi.org/10.1002/jps.3030490417 - PubMed
  90. Mussoni, L., Poggi, A., De Gaetano, G., & Donati, M. (1978). Effect of ditazole, an inhibitor of platelet aggregation, on a metastasizing tumour in mice. British Journal of Cancer, 37(1), 126-129. https://doi.org/10.1038/bjc.1978.18 - PubMed
  91. Naik, R., Harmalkar, D. S., Xu, X., Jang, K., & Lee, K. (2015). Bioactive benzofuran derivatives: Moracins A-Z in medicinal chemistry. European Journal of Medicinal Chemistry, 90, 379-393. https://doi.org/10.1016/j.ejmech.2014.11.047 - PubMed
  92. Najafi, Z., Mahdavi, M., Saeedi, M., Karimpour-Razkenari, E., Edraki, N., Sharifzadeh, M., Khanavi, M., & Akbarzadeh, T. (2019). Novel tacrine-coumarin hybrids linked to 1, 2, 3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorganic Chemistry, 83, 303-316. https://doi.org/10.1016/j.bioorg.2018.10.056 - PubMed
  93. Nakamura, S. (1955). Structure of azomycin, a new antibiotic. Pharmaceutical Bulletin, 3(5), 379-383. https://doi.org/10.1248/cpb1953.3.379 - PubMed
  94. Neeraja, P., Srinivas, S., Mukkanti, K., Dubey, P. K., & Pal, S. (2016). 1H-1, 2, 3-Triazolyl-substituted 1, 3, 4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorganic & Medicinal Chemistry Letters, 26(21), 5212-5217. https://doi.org/10.1016/j.bmcl.2016.09.059 - PubMed
  95. Nugroho, A., Park, J.-H., Choi, J. S., Park, K.-S., Hong, J.-P., & Park, H.-J. (2019). Structure determination and quantification of a new flavone glycoside with anti-acetylcholinesterase activity from the herbs of Elsholtzia ciliata. Natural Product Research, 33(6), 814-821. https://doi.org/10.1080/14786419.2017.1413556 - PubMed
  96. Paparella, A. S., Lee, K. J., Hayes, A. J., Feng, J., Feng, Z., Cini, D., Deshmukh, S., Booker, G. W., Wilce, M. C., & Polyak, S. W. (2018). Halogenation of biotin protein ligase inhibitors improves whole cell activity against Staphylococcus aureus. ACS Infectious Diseases, 4(2), 175-184. https://doi.org/10.1021/acsinfecdis.7b00134 - PubMed
  97. Parker, W. B. (2009). Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chemical Reviews, 109(7), 2880-2893. https://doi.org/10.1021/cr900028p - PubMed
  98. Patpi, S. R., Pulipati, L., Yogeeswari, P., Sriram, D., Jain, N., Sridhar, B., Murthy, R., Kalivendi, S. V., & Kantevari, S. (2012). Design, synthesis, and structure-activity correlations of novel dibenzo [b, d] furan, dibenzo [b, d] thiophene, and N-methylcarbazole clubbed 1, 2, 3-triazoles as potent inhibitors of mycobacterium tuberculosis. Journal of Medicinal Chemistry, 55(8), 3911-3922. https://doi.org/10.1021/jm300125e - PubMed
  99. Peterson, K., Kumar, R., Stenström, O., Verma, P., Verma, P. R., Håkansson, M., Kahl-Knutsson, B., Zetterberg, F., Leffler, H., & Akke, M. (2018). Systematic tuning of fluoro-galectin-3 interactions provides thiodigalactoside derivatives with single-digit nM affinity and high selectivity. Journal of Medicinal Chemistry, 61(3), 1164-1175. https://doi.org/10.1021/acs.jmedchem.7b01626 - PubMed
  100. Pokrovskaya, V., Belakhov, V., Hainrichson, M., Yaron, S., & Baasov, T. (2009). Design, synthesis, and evaluation of novel fluoroquinolone−aminoglycoside hybrid antibiotics. Journal of Medicinal Chemistry, 52(8), 2243-2254. https://doi.org/10.1021/jm900028n - PubMed
  101. Qi, Y., Ding, Z., Yao, Y., Ma, D., Ren, F., Yang, H., & Chen, A. (2019). Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Experimental and Therapeutic Medicine, 17(3), 1670-1676. https://doi.org/10.3892/etm.2018.7138 - PubMed
  102. Rajavelu, K., Subaraja, M., & Rajakumar, P. (2018). Synthesis, optical properties, and antioxidant and anticancer activity of benzoheterazole dendrimers with triazole bridging unit. New Journal of Chemistry, 42(5), 3282-3292. https://doi.org/10.1039/C7NJ04060A - PubMed
  103. Rambabu, N., Dubey, P. K., Ram, B., & Balram, B. (2016). Synthesis, characterization and antimicrobial evaluation of (E)-N′-[(1-(2-methoxy-6-pentadecylbenzyl)-1H-1,2,3-triazol-4-yl]-methylene)benzohydrazide derivatives. Asian Journal of Chemistry, 28(1), 175-180. https://doi.org/10.14233/ajchem.2016.19310 - PubMed
  104. Rani, A., Johansen, M. D., Roquet-Banères, F., Kremer, L., Awolade, P., Ebenezer, O., Singh, P., & Kumar, V. (2020). Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorganic & Medicinal Chemistry Letters, 30(22), 127576. https://doi.org/10.1016/j.bmcl.2020.127576 - PubMed
  105. Rani, A., Singh, A., Kaur, J., Singh, G., Bhatti, R., Gumede, N., Kisten, P., Singh, P., Sumanjit, & Kumar, V. (2021). 1H-1,2,3-triazole grafted tacrine-chalcone conjugates as potential cholinesterase inhibitors with the evaluation of their behavioral tests and oxidative stress in mice brain cells. Bioorganic Chemistry, 114, 105053. https://doi.org/10.1016/j.bioorg.2021.105053 - PubMed
  106. Rao, Y. J., Sowjanya, T., Thirupathi, G., Murthy, N. Y. S., & Kotapalli, S. S. (2018). Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Molecular Diversity, 22(4), 803-814. https://doi.org/10.1007/s11030-018-9833-4 - PubMed
  107. Revie, N. M., Robbins, N., Whitesell, L., Frost, J. R., Appavoo, S. D., Yudin, A. K., & Cowen, L. E. (2020). Oxadiazole-containing macrocyclic peptides potentiate azole activity against pathogenic Candida species. Msphere, 5(2), e00256-20. https://doi.org/10.1128/mSphere.00256-20 - PubMed
  108. S. M Forezi, L., Lima, C. G. S., Amaral, A. A. P., Ferreira, P. G., Souza, M. C. B. V., Cunha, A. C., C. da Silva, F., & Ferreira, V. F. (2021). Bioactive 1,2,3-triazoles: An account on their synthesis, structural diversity and biological applications. The Chemical Record. https://doi.org/10.1002/tcr.202000185 - PubMed
  109. Saini, A., Kumar, S., Raj, R., Chowdhary, S., Gendrot, M., Mosnier, J., Fonta, I., Pradines, B., & Kumar, V. (2021). Synthesis and antiplasmodial evaluation of 1H-1, 2, 3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorganic Chemistry, 109, 104733. https://doi.org/10.1016/j.bioorg.2021.104733 - PubMed
  110. Santosh, R., Selvam, M. K., Kanekar, S. U., & Nagaraja, G. K. (2018). Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. ChemistrySelect, 3(23), 6338-6343. https://doi.org/10.1002/slct.201800905 - PubMed
  111. Sepehri, N., Mohammadi-Khanaposhtani, M., Asemanipoor, N., Hosseini, S., Biglar, M., Larijani, B., Mahdavi, M., Hamedifar, H., Taslimi, P., Sadeghian, N., & Gulcin, I. (2020). Synthesis, characterization, molecular docking, and biological activities of coumarin-1,2,3-triazole-acetamide hybrid derivatives. Archiv Der Pharmazie, 353(10), 2000109. https://doi.org/10.1002/ardp.202000109 - PubMed
  112. Sharma, S., Kumar, D., Singh, G., Monga, V., & Kumar, B. (2020). Recent advancements in the development of heterocyclic anti-inflammatory agents. European Journal of Medicinal Chemistry, 200, 112438. https://doi.org/10.1016/j.ejmech.2020.112438 - PubMed
  113. Shavit, M., Pokrovskaya, V., Belakhov, V., & Baasov, T. (2017). Covalently linked kanamycin-Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorganic & Medicinal Chemistry, 25(11), 2917-2925. https://doi.org/10.1016/j.bmc.2017.02.068 - PubMed
  114. Shchekotikhin, A. (2020). Thematic issue “Heterocyclic Compounds in Medicinal Chemistry”. Chemistry of Heterocyclic Compounds, 56(6), 625. - PubMed
  115. Simpson, D., & Curran, M. P. (2008). Ramelteon. Drugs, 68(13), 1901-1919. https://doi.org/10.2165/00003495-200868130-00011 - PubMed
  116. Singh, A., Gut, J., Rosenthal, P. J., & Kumar, V. (2017). 4-aminoquinoline-ferrocenyl-chalcone conjugates: synthesis and anti-plasmodial evaluation. European Journal of Medicinal Chemistry, 125, 269-277. https://doi.org/10.1016/j.ejmech.2016.09.044 - PubMed
  117. Singh, A., Zhang, D., Tam, C. C., Cheng, L. W., Land, K. M., & Kumar, V. (2019). Click-chemistry approach to synthesis of functionalized isatin-ferrocenes and their biological evaluation against the human pathogen Trichomonas vaginalis. Journal of Organometallic Chemistry, 896, 1-4. https://doi.org/10.1016/j.jorganchem.2019.05.025 - PubMed
  118. Singh, G., Singh, J., Singh, A., Singh, J., Kumar, M., Gupta, K., & Chhibber, S. (2018). Synthesis, characterization and antibacterial studies of schiff based 1, 2, 3-triazole bridged silatranes. Journal of Organometallic Chemistry, 871, 21-27. https://doi.org/10.1016/j.jorganchem.2018.06.024 - PubMed
  119. Singh, H., Singh, J. V., Gupta, M. K., Saxena, A. K., Sharma, S., Nepali, K., & Bedi, P. M. S. (2017). Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorganic & Medicinal Chemistry Letters, 27(17), 3974-3979. https://doi.org/10.1016/j.bmcl.2017.07.069 - PubMed
  120. Singh, P., Swain, B., Thacker, P. S., Sigalapalli, D. K., Yadav, P. P., Angeli, A., Supuran, C. T., & Arifuddin, M. (2020). Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1, 2, 3-triazole chalcone hybrids. Bioorganic Chemistry, 99, 103839. https://doi.org/10.1016/j.bioorg.2020.103839 - PubMed
  121. Slavova, K. I., Todorov, L. T., Belskaya, N. P., Palafox, M. A., & Kostova, I. P. (2020). Developments in the application of 1, 2, 3-triazoles in cancer treatment. Recent Patents on Anti-Cancer Drug Discovery, 15(2), 92-112. https://doi.org/10.2174/1574892815666200717164457 - PubMed
  122. Somagond, S. M., Kamble, R. R., Bayannavar, P. K., Shaikh, S. K. J., Joshi, S. D., Kumbar, V. M., Nesaragi, A. R., & Kariduraganavar, M. Y. (2019). Click chemistry based regioselective one-pot synthesis of coumarin-3-yl-methyl-1, 2, 3-triazolyl-1, 2, 4-triazol-3 (4H)-ones as newer potent antitubercular agents. Archiv Der Pharmazie, 352(10), 1900013. https://doi.org/10.1002/ardp.201900013 - PubMed
  123. Sooknual, P., Pingaew, R., Phopin, K., Ruankham, W., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2020). Synthesis and neuroprotective effects of novel chalcone-triazole hybrids. Bioorganic Chemistry, 105, 104384. https://doi.org/10.1016/j.bioorg.2020.104384 - PubMed
  124. Sowjanya, T., Rao, Y. J., & Murthy, N. (2017). Synthesis and antiproliferative activity of new 1, 2, 3-triazole/flavone hybrid heterocycles against human cancer cell lines. Russian Journal of General Chemistry, 87(8), 1864-1871. https://doi.org/10.1134/S1070363217080357 - PubMed
  125. Srivastava, S., Bimal, D., Bohra, K., Singh, B., Ponnan, P., Jain, R., Varma-Basil, M., Maity, J., Thirumal, M., & Prasad, A. K. (2018). Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl-/-coumarinyl-1, 2, 3-triazole. European Journal of Medicinal Chemistry, 150, 268-281. https://doi.org/10.1016/j.ejmech.2018.02.067 - PubMed
  126. Sum, T. H., Sum, T. J., Galloway, W. R., Collins, S., Twigg, D. G., Hollfelder, F., & Spring, D. R. (2016). Combinatorial synthesis of structurally diverse triazole-bridged flavonoid dimers and trimers. Molecules, 21(9), 1230. https://doi.org/10.3390/molecules21091230 - PubMed
  127. Sunitha, V., Kumar, A. K., Shankaraiah, P., Jalapathi, P., & Lincoln, C. A. (2018). Synthesis and antibacterial evaluation of benzofuran based di-1, 2, 3-triazoles. Russian Journal of General Chemistry, 88(7), 1515-1524. https://doi.org/10.1134/S1070363218070265 - PubMed
  128. Syeda, S. S., Sánchez, G., Hong, K. H., Hawkinson, J. E., Georg, G. I., & Blanco, G. (2018). Design, synthesis, and in vitro and in vivo evaluation of ouabain analogues as potent and selective Na, K-ATPase α4 isoform inhibitors for male contraception. Journal of Medicinal Chemistry, 61(5), 1800-1820. https://doi.org/10.1021/acs.jmedchem.7b00925 - PubMed
  129. Szűcs, Z., Csávás, M., Rőth, E., Borbás, A., Batta, G., Perret, F., Ostorházi, E., Szatmári, R., Vanderlinden, E., & Naesens, L. (2017). Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. Journal of Antibiotics, 70(2), 152-157. https://doi.org/10.1038/ja.2016.80 - PubMed
  130. Tachallait, H., Bouyahya, A., Talha, A., Bakri, Y., Dakka, N., Demange, L., Benhida, R., & Bougrin, K. (2018). Concise synthesis and antibacterial evaluation of novel 3-(1, 4-disubstituted-1, 2, 3-triazolyl) uridine nucleosides. Archiv Der Pharmazie, 351(11), 1800204. https://doi.org/10.1002/ardp.201800204 - PubMed
  131. Tanimoto, A., Witaicenis, A., Caruso, Í. P., Piva, H. M., Araujo, G. C., Moraes, F. R., Fossey, M. C., Cornélio, M. L., Souza, F. P., & Di Stasi, L. C. (2020). 4-Methylesculetin, a natural coumarin with intestinal anti-inflammatory activity, elicits a glutathione antioxidant response by different mechanisms. Chemico-Biological Interactions, 315, 108876. https://doi.org/10.1016/j.cbi.2019.108876 - PubMed
  132. Tarawneh, A. H., León, F., Jain, S. K., Gadetskaya, A. V., Abu-Orabi, S. T., Tekwani, B. L., & Cutler, S. J. (2018). Evaluation of triazole and isoxazole derivatives as potential anti-infective agents. Medicinal Chemistry Research, 27(4), 1269-1275. https://doi.org/10.1007/s00044-018-2146-4 - PubMed
  133. Thakur, R. K., Joshi, P., Baranwal, P., Sharma, G., Shukla, S. K., Tripathi, R., & Tripathi, R. P. (2018). Synthesis and antiplasmodial activity of glyco-conjugate hybrids of phenylhydrazono-indolinones and glycosylated 1, 2, 3-triazolyl-methyl-indoline-2, 3-diones. European Journal of Medicinal Chemistry, 155, 764-771. https://doi.org/10.1016/j.ejmech.2018.06.042 - PubMed
  134. Thillainayagam, M., Malathi, K., & Ramaiah, S. (2018). In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Journal of Biomolecular Structure & Dynamics, 36(15), 3993-4009. https://doi.org/10.1080/07391102.2017.1404935 - PubMed
  135. Tian, Y., Liu, Z., Liu, J., Huang, B., Kang, D., Zhang, H., De Clercq, E., Daelemans, D., Pannecouque, C., & Lee, K.-H. (2018). Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1, 4-disubstituted 1, 2, 3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. European Journal of Medicinal Chemistry, 151, 339-350. https://doi.org/10.1016/j.ejmech.2018.03.059 - PubMed
  136. Tittal, R. K., Ghule, V. D., Yadav, P., Lal, K., & Kumar, A. (2020). Synthesis, antimicrobial potency with in silico study of Boc-leucine-1, 2, 3-triazoles. Steroids, 161, 108675. https://doi.org/10.1016/j.steroids.2020.108675 - PubMed
  137. Tittal, R. K., Yadav, P., Lal, K., & Kumar, A. (2019). Synthesis, molecular docking and DFT studies on biologically active 1, 4-disubstituted-1, 2, 3-triazole-semicarbazone hybrid molecules. New Journal of Chemistry, 43(21), 8052-8058. https://doi.org/10.1039/C9NJ00473D - PubMed
  138. Tolan, H. E., El-Sayed, W. A., Tawfek, N., Abdel-Megeid, F. M., & Kutkat, O. M. (2019). Synthesis and anti-H5N1 virus activity of triazole-and oxadiazole-pyrimidine hybrids and their nucleoside analogs. Nucleosides, Nucleotides & Nucleic Acids, 39(5), 649-670. https://doi.org/10.1080/15257770.2019.1674331 - PubMed
  139. Trein, M. R., Rodrigues e Oliveira, L., Rigo, G. V., Garcia, M. A. R., Petro-Silveira, B., da Silva Trentin, D., Macedo, A. J., Regasini, L. O., & Tasca, T. (2019). Anti-trichomonas vaginalis activity of chalcone and amino-analogues. Parasitology Research, 118(2), 607-615. https://doi.org/10.1007/s00436-018-6164-4 - PubMed
  140. Valdomir, G., Valdomir, G., Fernández, M. Á., Lagunes, I., Padrón, J. I., Martín, V. S., Padrón, J. M., & Davyt, D. (2018). Oxa/thiazole-tetrahydropyran triazole-linked hybrids with selective antiproliferative activity against human tumour cells. New Journal of Chemistry, 42(16), 13784-13789. https://doi.org/10.1039/C8NJ02388C - PubMed
  141. Vanaparthi, S., Bantu, R., Jain, N., Janardhan, S., & Nagarapu, L. (2020). Synthesis and anti-proliferative activity of a novel 1, 2, 3-triazole tethered chalcone acetamide derivatives. Bioorganic & Medicinal Chemistry Letters, 30(16), 127304. https://doi.org/10.1016/j.bmcl.2020.127304 - PubMed
  142. Vanga, N. R., Kota, A., Sistla, R., & Uppuluri, M. (2017). Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Molecular Diversity, 21(2), 273-282. https://doi.org/10.1007/s11030-016-9716-5 - PubMed
  143. Vani, I., Sireesha, R., Mak, K.-K., Rao, P. M., Prasad, K., & Rao, M. B. (2020). Microwave assisted synthesis and antimicrobial and antioxidant activities of dimers of 1, 2, 3-triazole-benzofuran bearing alkyl spacer derivatives. Chemical Data Collections, 31, 100605. https://doi.org/10.1016/j.cdc.2020.100605 - PubMed
  144. Venkatagiri, N., Krishna, T., Thirupathi, P., Bhavani, K., & Reddy, C. (2018). Synthesis, characterization, and antimicrobial activity of a series of 2-(5-phenyl-1, 3, 4-oxadiazol-2-yl)-N-[(1-aryl-1H-1, 2, 3-triazol-4-yl) methyl] anilines using click chemistry. Russian Journal of General Chemistry, 88(7), 1488-1494. https://doi.org/10.1134/S1070363218070228 - PubMed
  145. Wadhwa, P., Jain, P., Rudrawar, S., & Jadhav, H. R. (2018). Quinoline, coumarin and other heterocyclic analogs based HIV-1 integrase inhibitors. Current Drug Discovery Technologies, 15(1), 2-19. https://doi.org/10.2174/1570163814666170531115452 - PubMed
  146. Walss-Bass, C., Weintraub, S. T., Hatch, J., Mintz, J., & Chaudhuri, A. R. (2008). Clozapine causes oxidation of proteins involved in energy metabolism: A possible mechanism for antipsychotic-induced metabolic alterations. International Journal of Neuropsychopharmacology, 11(8), 1097-1104. https://doi.org/10.1017/S1461145708008882 - PubMed
  147. Wang, W., Wang, W., Yao, G., Ren, Q., Wang, D., Wang, Z., Liu, P., Gao, P., Zhang, Y., & Wang, S. (2018). Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer's agents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 151, 351-362. https://doi.org/10.1016/j.ejmech.2018.03.082 - PubMed
  148. Wei, Y., Li, S.-Q., & Hao, S.-H. (2018). New angular oxazole-fused coumarin derivatives: Synthesis and biological activities. Natural Product Research, 32(15), 1824-1831. https://doi.org/10.1080/14786419.2017.1405408 - PubMed
  149. White, H. S., Franklin, M. R., Kupferberg, H. J., Schmutz, M., Stables, J. P., & Wolf, H. H. (2008). The anticonvulsant profile of rufinamide (CGP 33101) in rodent seizure models. Epilepsia, 49(7), 1213-1220. https://doi.org/10.1111/j.1528-1167.2008.01552.x - PubMed
  150. Wu, H., Xi, H., Lai, F., Ma, J., Chen, W., & Liu, H. (2019). Cellular antioxidant activity and Caco-2 cell uptake characteristics of flavone extracts from Labisia pumila. International Journal of Food Science & Technology, 54(2), 536-549. https://doi.org/10.1111/ijfs.13968 - PubMed
  151. Wu, W., Liu, Y., Ye, H., & Li, Z. (2018). Millepachine showed novel antitumor effects in cisplatin-resistant human ovarian cancer through inhibiting drug efflux function of ATP-binding cassette transporters. Phytotherapy Research, 32(12), 2428-2435. https://doi.org/10.1002/ptr.6180 - PubMed
  152. Xu, H., Hou, Z., Liang, Z., Guo, M. B., Su, X., & Guo, C. (2019). Design, synthesis and antifungal activity of benzofuran and its analogues. Chinese Journal of Chemistry, 37(12), 1245-1250. https://doi.org/10.1002/cjoc.201900304 - PubMed
  153. Xu, J. H., Fan, Y. L., & Zhou, J. (2018). Quinolone-triazole hybrids and their biological activities. Journal of Heterocyclic Chemistry, 55(8), 1854-1862. https://doi.org/10.1002/jhet.3234 - PubMed
  154. Xu, Z., Gao, C., Ren, Q.-C., Song, X.-F., Feng, L.-S., & Lv, Z.-S. (2017). Recent advances of pyrazole-containing derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry, 139, 429-440. https://doi.org/10.1016/j.ejmech.2017.07.059 - PubMed
  155. Xu, Z., Zhao, S.-J., & Liu, Y. (2019). 1, 2, 3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. European Journal of Medicinal Chemistry, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700 - PubMed
  156. Xu, Z., Zhao, S., Lv, Z., Feng, L., Wang, Y., Zhang, F., Bai, L., & Deng, J. (2019). Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. European Journal of Medicinal Chemistry, 162, 266-276. https://doi.org/10.1016/j.ejmech.2018.11.025 - PubMed
  157. Xu, Z., Zhao, S. J., Lv, Z. S., Gao, F., Wang, Y. L., Zhang, F., Bai, L. Y., Deng, J. L., Wang, Q., & Fan, Y. L. (2019). Design, synthesis, and evaluation of tetraethylene glycol-tethered isatin-1, 2, 3-triazole-coumarin hybrids as novel anticancer agents. Journal of Heterocyclic Chemistry, 56(3), 1127-1132. https://doi.org/10.1002/jhet.3475 - PubMed
  158. Yadav, N., Agarwal, D., Kumar, S., Dixit, A., Gupta, R. D., & Awasthi, S. K. (2018). In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. European Journal of Medicinal Chemistry, 145, 735-745. https://doi.org/10.1016/j.ejmech.2018.01.017 - PubMed
  159. Yadav, P., Lal, K., & Kumar, A. (2021). Antimicrobial screening, in silico studies and QSAR of chalcone-based 1,4-disubstituted 1,2,3-triazole hybrids. Drug Research, 71(03), 149-156. https://doi.org/10.1055/a-1296-7751 - PubMed
  160. Yadav, P., Lal, K., Kumar, A., Guru, S. K., Jaglan, S., & Bhushan, S. (2017). Green synthesis and anticancer potential of chalcone linked-1, 2, 3-triazoles. European Journal of Medicinal Chemistry, 126, 944-953. https://doi.org/10.1016/j.ejmech.2016.11.030 - PubMed
  161. Yadav, P., Lal, K., Kumar, L., Kumar, A., Kumar, A., Paul, A., & Kumar, R. (2018). Designed chalcone-1, 2, 3-triazole conjugates as potential antimicrobial agents synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1, 2, 3-triazole conjugates. European Journal of Medicinal Chemistry, 155, 263-274. https://doi.org/10.1016/j.ejmech.2018.05.055 - PubMed
  162. Yang, X., Wedajo, W., Yamada, Y., Dahlroth, S.-L., Neo, J.- J.-L., Dick, T., & Chui, W.-K. (2018). 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. European Journal of Medicinal Chemistry, 144, 262-276. https://doi.org/10.1016/j.ejmech.2017.12.017 - PubMed
  163. Zhang, B. (2019). Comprehensive review on the anti-bacterial activity of 1, 2, 3-triazole hybrids. European Journal of Medicinal Chemistry, 168, 357-372. https://doi.org/10.1016/j.ejmech.2019.02.055 - PubMed
  164. Zhang, H.-Z., Zhao, Z.-L., & Zhou, C.-H. (2018). Recent advance in oxazole-based medicinal chemistry. European Journal of Medicinal Chemistry, 144, 444-492. https://doi.org/10.1016/j.ejmech.2017.12.044 - PubMed
  165. Zhang, S., Xu, Z., Gao, C., Ren, Q.-C., Chang, L., Lv, Z.-S., & Feng, L.-S. (2017). Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry, 138, 501-513. https://doi.org/10.1016/j.ejmech.2017.06.051 - PubMed
  166. Zhou, Y. X., Zhang, H., & Peng, C. (2014). Puerarin: a review of pharmacological effects. Phytotherapy Research, 28(7), 961-975. https://doi.org/10.1002/ptr.5083. - PubMed
  167. Zimmermann, L. A., de Moraes, M. H., da Rosa, R., de Melo, E. B., Paula, F. R., Schenkel, E. P., Steindel, M., & Bernardes, L. S. (2018). Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity. Bioorganic & Medicinal Chemistry, 26(17), 4850-4862. https://doi.org/10.1016/j.bmc.2018.08.025 - PubMed

Publication Types

Grant support