Display options
Share it on

Biotechnol J. 2021 Sep 30;e2100124. doi: 10.1002/biot.202100124. Epub 2021 Sep 30.

Kinetic model of a newly-isolated Lysinibacillus sp. strain YL and elastic properties of its biogenic CaCO.

Biotechnology journal

Jindarat Ekprasert, Thunyarat Pongtharangkul, Poemwai Chainakun, Ittipon Fongkaew, Kamonwan Khanthasombat, Rungtiwa Kamngam, Wachiraya Boonsuan, Zerlinda Mara Ditta, Wasan Seemakram, Sophon Boonlue

Affiliations

  1. Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.
  2. Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
  3. School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
  4. Center of Excellence in Advanced Functional Materials, School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
  5. Biological Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.

PMID: 34592060 DOI: 10.1002/biot.202100124

Abstract

BACKGROUND: Biocement, calcifying bacteria-incorporated cement, offers an environmentally-friendly way to increase the cement lifespan. This work aimed to investigate the potential use of Lysinibacillus sp. strain YL towards biocement application in both theoretical and experimental ways.

METHODS AND RESULTS: Strain YL was grown using calcium acetate (Ca(C

CONCLUSION: Strain YL is a promising candidate for biocement applications. This work represents the trials of experiments and models allowing quantitatively comparison with large-scale production in the future.

© 2021 Wiley-VCH GmbH.

Keywords: Lysinibacillus; biocalcification; biocement; calcite; mechanical properties

References

  1. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197-210. - PubMed
  2. Seifan, M., Samani, K. A., & Berenjian, A. (2017). New insight into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101, 3131-3142. - PubMed
  3. Meier, A., Kastner, A., Harries, D., Wierzbicka-Wieczorek, M., Majzlan, J., Büchel, G., & Kothe, E. (2017). Calcium carbonates: induced biomineralization with controlled macromorphology. Biogeoscience, 14, 4867-4878. - PubMed
  4. Phang, I. R. K., Chan, Y. S., Wong, K. S., & Lau, S. Y. (2018). Isolation and characterization of urease-producing bacteria from tropical peat. Biocatalysis and Agricultural Biotechnology, 13, 168-175. - PubMed
  5. Ekprasert, J., Fongkaew, I., Chainakun, P., Kamngam, R., & Boonsuan, W. (2020). Investigating mechanical properties and biocement application of CaCO3 precipitated by a newly-isolated Lysinibaillus sp. WH using artificial neural networks. Scientific Reports, 10(1), 16137. - PubMed
  6. Maleki, M., Ebrahimi, S., Asadzadeh, F., & Tabrizi, M. E. (2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. International Journal of Environmental Science and Technology, 13(3), 937-944. - PubMed
  7. Salifu, E., MacLachlan, E., Iyer, K. R., Knapp, C. W., & Tarantino, A. (2016). Application of microbially induced calcite precipitation in erosion mitigation and stabilization of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 201, 96-105. - PubMed
  8. Joshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: A review. Journal of Indian Microbiology and Biotechnology, 44(11), 1511-1525. - PubMed
  9. Canakci, H., Sidik, W., & Kilic, I. H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211-1221. - PubMed
  10. Achal, V., Pan, X., Lee, D. J., & Kumari, D. (2013). Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352-1358. - PubMed
  11. Wang, M., Wu, S., Guo, J., Zhang, X., Yang, Y., Chen, F., & Zhu, R. (2019). Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. Journal of Hazardous Materials, 366, 684-693. - PubMed
  12. Mutitu, D. K., Wachira, J. M., Mwirichia, R., Thiong'O, J. K., Munyao, O. M., & Muriithi, G. (2019). Influence of Lysinibacillus sphaericus on compressive strength and water sorptivity in microbial cement mortar. Heliyon, 5(11), e02881. - PubMed
  13. Knorre, H. V., & Krumbein, W. E. (2000). Bacterial calcification. In R. E. Riding & S. M. Awramik (Eds.), Microbial sediment (pp. 25-31). Verlag Berlin Heidelberg: Springer. - PubMed
  14. Castro-Alonso, M. J., Montanez-Hernandez, L. E., Sanchez-Munoz, M. A., Franco, M. R. M., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials Science, 6, 126. - PubMed
  15. Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J. P. (1999). Ca-carbonates precipitation and limestone genesis - The microbiogeolist point of view. Sedimentary Geology, 126, 9-23. - PubMed
  16. Kile, D. E., Eberl, D. D., Hoch, A. R., & Reddy, M. M. (2000). An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochimica Et Cosmochimica Acta, 64, 2937-2950. - PubMed
  17. Achal, V., & Pan, X. (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Current Microbiology, 62, 894-902. - PubMed
  18. Tisato, N., Torriani, S. F., Monteux, S., Sauro, F., De Waele, J., Tavagna, M. L., D'Angeli, I. M., Chailloux, D., Renda, M., Eglinton, T. I., & Bontognali, T. R. R. (2015). Microbial mediation of complex subterranean mineral structures. Scientific Reports, 5, 15525. - PubMed
  19. Liu, Y. (2007). Overview of some theoretical approaches for derivation of the Monod equation. Applied Microbiology and Biotechnology, 73, 1241-1250. - PubMed
  20. Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering, 10, 707-723. - PubMed
  21. Rattanasak, U., Pankhet, K., & Chindaprasirt, P. (2011). Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. International Journal of Minerals Metallurgy Material, 18(3), 364. - PubMed
  22. Xu, J., Du, Y., Jiang, Z., & She, A. (2015). Effects of calcium source on biochemical properties of microbial CaCO3 precipitation. Frontiers in Microbiology, 6, 1366. - PubMed
  23. Reuss, A. (1929). Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics, 9(1), 49-58. - PubMed
  24. Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. - PubMed
  25. Cantwell, P. R., Kim, H., Schneider, M. M., Hsu, H. H., Peroulis, D., Stach, E. A., & Strachan, A. (2012). Estimating the in-plane Young's modulus of polycrystalline films in MEMS. Journal of Microelectromechanical Systems, 21(4), 840-849. - PubMed
  26. Boquet, E., Boronat, A., & Ramos-Cormenzana, A. (1973). Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 246(5434), 527-529. - PubMed
  27. Marvasi, M., Gallagher, K. L., Martinez, L. C., Pagan, W. C. M., Santiago, R. E. R., Vega, G. C., & Visscher, P. T. (2012). Importance of B4 medium in determining organomineralization potential of bacterial environmental isolates. Geomicrobiology, 29, 916-924. - PubMed
  28. Zhang, J., Zhou, A., Liu, Y., Zhao, B., Luan, Y., Wang, S., Yue, X., & Li, Z. (2017). Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Scientific Reports, 7, 14600. - PubMed
  29. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-147). New York, NY: John Wiley & Sons. - PubMed
  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729. - PubMed
  31. Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 68, 314-319. - PubMed
  32. Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. - PubMed
  33. Gaillac, R., Pullumbi, P., & Coudert, F. X. (2016). ELATE: An open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28, 275201. - PubMed
  34. Herbaud, M. L., Guiseppi, A., Denizot, F., Haiech, J., & Kilhoffer, M. C. (1998). Calcium signaling in Bacillus subtilis. Biochimica et Biophysica Acta - Molecular Cell Research, 1448, 212-226. - PubMed
  35. Bravo, M., Santos Silva, A., de Brito, J., & Evangelista, L. (2015). Microstructure of concrete with aggregates from construction and demolition waste recycling plants. Microscopy and Microanalysis, 1(1), 1-19. - PubMed
  36. ASTM C109/C109M. (2007). Standard test method for compressive strength of hydraulic cement mortars. Annual book of standards. West Conshohocken: ASTM. - PubMed
  37. Hubbard, C. R., & Snyder, R. L. (1988). RIR-measurement and use in quantitative XRD. Powder Diffraction, 3(2), 74-77. - PubMed
  38. Golovkina, D. A., Zhurishkina, E. V., Ivanova, L. A., Baranchikov, A. E., Sokolov, A. Y., Bobrov, K. S., Masharsky, A. E., Tsvigum, N. V., Kopitsa, G. P., & Kulminskaya, A. A. (2020). Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life, 10, 317. - PubMed
  39. Xu, G., Tang, Y., Lian, J., Yan, Y., & Dengfeng, F. (2017). Mineralization process of biocemented sand and impact of bacteria and calcium ions concentrations on crystal morphology. Advances in Materials Science and Engineering, 2017, 1-13. - PubMed
  40. Ma, L., Ping Pang, A., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19, 12. - PubMed
  41. Omoregie, A. I., Ngu, L. H., Ong, D. E. L., & Nissom, P. M. (2019). Low cost cultivation of Sporosarcina pasteurii strain in food grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 17, 247-255. - PubMed
  42. Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., & Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111, 338-349. - PubMed
  43. Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707-714. - PubMed
  44. Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105-111. - PubMed
  45. Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology, 46, 455-464. - PubMed
  46. Hsu, C. M., Huang, Y. H., Nimje, V. R., Lee, W. C., Chen, H. J., Kuo, Y. H., Huang, C. H., Chen, C. C., & Chen, C. Y. (2018). Comparative study on the sand bioconsolidation through calcium carbonate precipitation by Sporosarcina pasteurii and Bacillus subtilis. Crystals, 8(5), 189. - PubMed
  47. Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., & Jeong, J. H. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18, 903-908. - PubMed
  48. Shirakawa, M. A., Cincotto, M. A., Atencio, D., Gaylarde, C. C., & John, V. M. (2011). Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Brazilian Journal of Microbiology, 42, 499-507. - PubMed
  49. De Muynck, W., Cox, K., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22, 875-885. - PubMed
  50. De Muynck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves durability of cementitious materials. Cement and Concrete Research, 38, 1005-1014. - PubMed
  51. de Saint-Venant, A.-J.-C. B. (1856). Memoire sur la Flexion des Prismes, J. de Mathematiques Pures, Appliquees (Liouville), Deuxieme Serie, Tome I. - PubMed
  52. Daskalakis, M. I., Magoulas, A., Kotoulas, G., Catsikis, I., Bakolas, A., Karageorgis, A. P., Mavridou, A., Doulia, D., & Rigas, F. (2013). Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. Journal of Applied Microbiology, 115, 409-423. - PubMed
  53. Lee, Y. S., & Park, W. (2019). Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AMB Express, 9, 49. - PubMed
  54. Connolly, J., Kaufman, M., Rothman, A., Gupta, R., Redden, G., Schuster, M., Colwell, F., & Gerlach, R. (2013). Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation. Journal of Microbiological Methods, 94(3), 290-299. - PubMed
  55. Wu, Z., Shi, C., Khayat, K. H., & Wan, S. (2016). Effects of different nanomaterials on hardening and performance of ultra-high strength. Cement & Concrete Composites, 70, 24-34. - PubMed
  56. Qi, L., Liu, J., & Liu, Q. (2016). Compound effect of CaCO3 and CaSO4⋅2H2O on the strength of steel slag-cement binding materials. Material Research, 19(2), 269-275. - PubMed
  57. Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., Sato, T., Stutzman, P. E., Tanesi, J., & Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10. - PubMed
  58. Balam, N. H., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107-116. - PubMed

Publication Types