Display options
Share it on

PLoS Negl Trop Dis. 2021 Sep 27;15(9):e0009777. doi: 10.1371/journal.pntd.0009777. eCollection 2021 Sep.

Characterization of the β-tubulin gene family in Ascaris lumbricoides and Ascaris suum and its implication for the molecular detection of benzimidazole resistance.

PLoS neglected tropical diseases

Sara Roose, Russell W Avramenko, Stephen M J Pollo, James D Wasmuth, Shaali Ame, Mio Ayana, Martha Betson, Piet Cools, Daniel Dana, Ben P Jones, Zeleke Mekonnen, Arianna Morosetti, Abhinaya Venkatesan, Johnny Vlaminck, Matthew L Workentine, Bruno Levecke, John S Gilleard, Peter Geldhof

Affiliations

  1. Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium.
  2. Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Research Training Network, University of Calgary, Calgary, Alberta, Canada.
  3. Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Host-Parasite Interactions (HPI) Research Training Network, University of Calgary, Calgary, Alberta, Canada.
  4. Public Health Laboratory-Ivo de Carneri, Chake Chake, United Republic of Tanzania.
  5. Institute of Health, Faculty of Health Science, School of Medical Laboratory Science, Jimma University, Jimma, Ethiopia.
  6. Department of Veterinary Epidemiology and Public Health, University of Surrey, Guildford, Surrey, United Kingdom.

PMID: 34570778 PMCID: PMC8496844 DOI: 10.1371/journal.pntd.0009777

Abstract

BACKGROUND: The treatment coverage of control programs providing benzimidazole (BZ) drugs to eliminate the morbidity caused by soil-transmitted helminths (STHs) is unprecedently high. This high drug pressure may result in the development of BZ resistance in STHs and so there is an urgent need for surveillance systems detecting molecular markers associated with BZ resistance. A critical prerequisite to develop such systems is an understanding of the gene family encoding β-tubulin proteins, the principal targets of BZ drugs.

METHODOLOGY AND PRINCIPAL FINDINGS: First, the β-tubulin gene families of Ascaris lumbricoides and Ascaris suum were characterized through the analysis of published genomes. Second, RNA-seq and RT-PCR analyses on cDNA were applied to determine the transcription profiles of the different gene family members. The results revealed that Ascaris species have at least seven different β-tubulin genes of which two are highly expressed during the entire lifecycle. Third, deep amplicon sequencing was performed on these two genes in more than 200 adult A. lumbricoides (Ethiopia and Tanzania) and A. suum (Belgium) worms, to investigate the intra- and inter-species genetic diversity and the presence of single nucleotide polymorphisms (SNPs) that are associated with BZ resistance in other helminth species; F167Y (TTC>TAC or TTT>TAT), E198A (GAA>GCA or GAG>GCG), E198L (GAA>TTA) and F200Y (TTC>TAC or TTT>TAT). These particular SNPs were absent in the two investigated genes in all three Ascaris populations.

SIGNIFICANCE: This study demonstrated the presence of at least seven β-tubulin genes in Ascaris worms. A new nomenclature was proposed and prioritization of genes for future BZ resistance research was discussed. This is the first comprehensive description of the β-tubulin gene family in Ascaris and provides a framework to investigate the prevalence and potential role of β-tubulin sequence polymorphisms in BZ resistance in a more systematic manner than previously possible.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Parasitol Today. 1990 Apr;6(4):112-5 - PubMed
  2. Int J Parasitol. 2012 May 1;42(5):469-79 - PubMed
  3. Vet Parasitol. 2005 May 15;129(3-4):291-8 - PubMed
  4. Parasitology. 2007;134(Pt 8):1077-86 - PubMed
  5. Nat Genet. 2014 Mar;46(3):261-269 - PubMed
  6. Parasite Immunol. 2011 Apr;33(4):250-4 - PubMed
  7. Biochem Biophys Res Commun. 1993 Mar 15;191(2):413-9 - PubMed
  8. Rev Soc Bras Med Trop. 2020 Mar 16;53:e20190155 - PubMed
  9. Genome Res. 2011 Sep;21(9):1462-77 - PubMed
  10. Genes Dev. 1989 Jun;3(6):870-81 - PubMed
  11. Int J Parasitol Drugs Drug Resist. 2012 Mar 03;2:92-7 - PubMed
  12. Elife. 2020 Nov 06;9: - PubMed
  13. Mol Biochem Parasitol. 2002 Apr 9;120(2):297-300 - PubMed
  14. PLoS Negl Trop Dis. 2015 Feb 06;9(2):e0003494 - PubMed
  15. PLoS One. 2013 Aug 12;8(8):e70212 - PubMed
  16. PLoS Negl Trop Dis. 2019 Aug 1;13(8):e0007471 - PubMed
  17. J Parasitol. 2004 Aug;90(4):868-70 - PubMed
  18. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3 - PubMed
  19. Mol Biochem Parasitol. 1994 Feb;63(2):299-303 - PubMed
  20. Vet Parasitol. 2012 May 25;186(3-4):344-9 - PubMed
  21. Nat Methods. 2016 Jul;13(7):581-3 - PubMed
  22. Genetics. 2010 Jul;185(3):883-96 - PubMed
  23. Parasitology. 2003 Dec;127(Pt 6):579-88 - PubMed
  24. Nat Biotechnol. 2016 May;34(5):525-7 - PubMed
  25. Bioinformatics. 2014 May 1;30(9):1312-3 - PubMed
  26. Mol Biochem Parasitol. 2009 Nov;168(1):120-2 - PubMed
  27. PLoS One. 2019 Oct 17;14(10):e0224108 - PubMed
  28. Vet Parasitol. 2007 Mar 31;144(3-4):313-20 - PubMed
  29. Nucleic Acids Res. 2016 Jan 4;44(D1):D774-80 - PubMed
  30. Bioinformatics. 2001 Aug;17(8):754-5 - PubMed
  31. Vet Parasitol. 2009 Apr 6;161(1-2):60-8 - PubMed
  32. PLoS One. 2015 Dec 02;10(12):e0143559 - PubMed
  33. PLoS Negl Trop Dis. 2018 Mar 30;12(3):e0006368 - PubMed
  34. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 - PubMed
  35. Int J Parasitol Drugs Drug Resist. 2011 Oct 14;1(1):14-27 - PubMed
  36. Am J Trop Med Hyg. 2013 Jun;88(6):1052-61 - PubMed
  37. Dev Cell. 2012 Nov 13;23(5):1072-80 - PubMed
  38. Parasitology. 2003 Jul;127(Pt 1):53-9 - PubMed
  39. Int J Parasitol Drugs Drug Resist. 2017 Dec;7(3):262-271 - PubMed
  40. Mol Biochem Parasitol. 2013 Jul;190(1):38-43 - PubMed
  41. J Cell Biol. 1989 Dec;109(6 Pt 1):2993-3003 - PubMed
  42. Nat Genet. 2019 Jan;51(1):163-174 - PubMed
  43. Parasit Vectors. 2019 Dec 9;12(1):576 - PubMed
  44. PLoS Negl Trop Dis. 2009;3(3):e397 - PubMed
  45. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 - PubMed
  46. PLoS Negl Trop Dis. 2018 Nov 2;12(11):e0006912 - PubMed
  47. PLoS Pathog. 2018 Oct 29;14(10):e1007226 - PubMed
  48. Nature. 2011 Oct 26;479(7374):529-33 - PubMed
  49. J Cell Sci. 1994 Aug;107 ( Pt 8):2165-75 - PubMed
  50. Wkly Epidemiol Rec. 2012 Jun 8;87(23):225-32 - PubMed
  51. Science. 1998 Dec 11;282(5396):2012-8 - PubMed
  52. Int J Parasitol. 2019 Jan;49(1):13-26 - PubMed
  53. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  54. PLoS Negl Trop Dis. 2018 Sep 17;12(9):e0006766 - PubMed
  55. Trop Med Infect Dis. 2019 Apr 27;4(2): - PubMed
  56. Int J Parasitol Drugs Drug Resist. 2020 Dec;14:28-36 - PubMed
  57. Mol Ecol Resour. 2015 Sep;15(5):1172-8 - PubMed
  58. Nat Genet. 2014 Jul;46(7):693-700 - PubMed
  59. PLoS Negl Trop Dis. 2017 Jan 12;11(1):e0005205 - PubMed
  60. Nature. 1998 Mar 5;392(6671):71-5 - PubMed
  61. Vet Parasitol. 1999 Jan 14;80(3):231-7 - PubMed
  62. PLoS Negl Trop Dis. 2013 Oct 03;7(10):e2467 - PubMed
  63. Mol Biochem Parasitol. 2017 Jul;215:2-10 - PubMed
  64. Int J Parasitol. 2013 May;43(6):465-75 - PubMed
  65. Int J Parasitol. 2002 Jun 15;32(7):921-8 - PubMed
  66. PLoS Negl Trop Dis. 2020 Feb 6;14(2):e0007931 - PubMed
  67. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  68. Commun Biol. 2020 Nov 9;3(1):656 - PubMed
  69. PLoS Negl Trop Dis. 2013 May 30;7(5):e2247 - PubMed
  70. Pharmacogenet Genomics. 2008 Feb;18(2):129-40 - PubMed

Publication Types