Display options
Share it on

Anim Microbiome. 2021 Oct 01;3(1):65. doi: 10.1186/s42523-021-00126-z.

Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts.

Animal microbiome

Sally L Bornbusch, Rachel L Harris, Nicholas M Grebe, Kimberly Roche, Kristin Dimac-Stohl, Christine M Drea

Affiliations

  1. Department of Evolutionary Anthropology, Duke University, Durham, USA. [email protected].
  2. Department of Evolutionary Anthropology, Duke University, Durham, USA.
  3. Program in Computational Biology & Bioinformatics, Duke University, Durham, USA.
  4. Department of Evolutionary Anthropology, Duke University, Durham, USA. [email protected].

PMID: 34598739 PMCID: PMC8485508 DOI: 10.1186/s42523-021-00126-z

Abstract

BACKGROUND: Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases.

RESULTS: Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups.

CONCLUSIONS: Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.

© 2021. The Author(s).

References

  1. Sci Transl Med. 2018 Sep 26;10(460): - PubMed
  2. ISME J. 2012 Aug;6(8):1621-4 - PubMed
  3. Am J Primatol. 2019 Oct;81(10-11):e22974 - PubMed
  4. Biol Lett. 2019 Jun 28;15(6):20190028 - PubMed
  5. Anim Microbiome. 2021 May 18;3(1):39 - PubMed
  6. Cell Mol Life Sci. 2002 Dec;59(12):2044-54 - PubMed
  7. Infect Immun. 2012 Jan;80(1):62-73 - PubMed
  8. Vet Parasitol. 2003 Feb 27;111(4):297-307 - PubMed
  9. J Travel Med. 2017 Apr 1;24(suppl_1):S35-S38 - PubMed
  10. Nat Microbiol. 2018 Nov;3(11):1255-1265 - PubMed
  11. Lancet Infect Dis. 2018 Feb;18(2):132-134 - PubMed
  12. Microb Ecol. 2016 Nov;72(4):943-954 - PubMed
  13. Environ Microbiol. 2006 Jul;8(7):1137-44 - PubMed
  14. ISME J. 2019 Jan;13(1):183-196 - PubMed
  15. Front Microbiol. 2014 May 20;5:219 - PubMed
  16. Anat Rec (Hoboken). 2011 Apr;294(4):567-79 - PubMed
  17. Microorganisms. 2020 Jan 24;8(2): - PubMed
  18. PLoS One. 2014 Jul 23;9(7):e102451 - PubMed
  19. Vet Immunol Immunopathol. 2018 Dec;206:65-72 - PubMed
  20. Microbiome. 2014 May 05;2:15 - PubMed
  21. BMC Microbiol. 2019 Oct 22;19(1):230 - PubMed
  22. Ups J Med Sci. 2014 May;119(2):96-102 - PubMed
  23. Clin Exp Immunol. 2010 Apr;160(1):70-9 - PubMed
  24. J Zoo Wildl Med. 2010 Sep;41(3):438-44 - PubMed
  25. Microbiome. 2021 Jan 23;9(1):26 - PubMed
  26. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 5;370(1670):20140087 - PubMed
  27. Nat Methods. 2016 Jul;13(7):581-3 - PubMed
  28. J Clin Gastroenterol. 2010 Sep;44(8):551-61 - PubMed
  29. Mol Microbiol. 2006 May;60(4):820-7 - PubMed
  30. Infect Immun. 2009 Jun;77(6):2367-75 - PubMed
  31. Nat Commun. 2016 Jan 26;7:10410 - PubMed
  32. Science. 2019 Sep 27;365(6460):1405-1409 - PubMed
  33. Microbiome. 2017 Feb 1;5(1):14 - PubMed
  34. Nat Commun. 2018 Jul 20;9(1):2872 - PubMed
  35. Biochem Pharmacol. 2017 Jun 15;134:114-126 - PubMed
  36. P T. 2015 May;40(5):344-52 - PubMed
  37. J Antimicrob Chemother. 1981 Dec;8 Suppl D:77-86 - PubMed
  38. Br J Pharmacol. 2008 Mar;153 Suppl 1:S347-57 - PubMed
  39. Front Microbiol. 2017 Nov 15;8:2224 - PubMed
  40. Appl Environ Microbiol. 2001 Feb;67(2):561-8 - PubMed
  41. Trends Microbiol. 2016 May;24(5):402-413 - PubMed
  42. Glob Health Epidemiol Genom. 2020 Apr 20;5:e2 - PubMed
  43. Nat Rev Microbiol. 2010 Apr;8(4):251-9 - PubMed
  44. Trends Microbiol. 2012 Jul;20(7):313-9 - PubMed
  45. PLoS One. 2020 Jan 15;15(1):e0226128 - PubMed
  46. Nat Commun. 2018 May 3;9(1):1786 - PubMed
  47. PeerJ. 2019 May 27;7:e6876 - PubMed
  48. Int J Antimicrob Agents. 2000 Nov;16 Suppl 1:S19-24 - PubMed
  49. Cell. 2018 Sep 6;174(6):1406-1423.e16 - PubMed
  50. Int J Antimicrob Agents. 2001 May;17(5):357-63 - PubMed
  51. Environ Microbiol. 2009 Dec;11(12):2970-88 - PubMed
  52. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  53. Nat Rev Microbiol. 2014 Sep;12(9):635-45 - PubMed
  54. Nature. 2011 Aug 31;477(7365):457-61 - PubMed
  55. Nat Rev Microbiol. 2013 Apr;11(4):277-84 - PubMed
  56. Am J Primatol. 2018 Jun;80(6):e22867 - PubMed
  57. Nature. 2000 May 11;405(6783):228-33 - PubMed
  58. FEMS Microbiol Rev. 2011 Sep;35(5):790-819 - PubMed
  59. Front Immunol. 2017 Apr 19;8:397 - PubMed
  60. ISME J. 2019 Mar;13(3):576-587 - PubMed
  61. Nat Rev Microbiol. 2009 Sep;7(9):629-41 - PubMed
  62. Gut. 2007 Oct;56(10):1481-2 - PubMed
  63. Elife. 2013 Apr 16;2:e00458 - PubMed
  64. Am J Gastroenterol. 2012 Jul;107(7):1079-87 - PubMed
  65. BMC Infect Dis. 2015 Jul 11;15:265 - PubMed
  66. Front Microbiol. 2016 Jan 12;6:1543 - PubMed
  67. Curr Opin Clin Nutr Metab Care. 2016 Sep;19(5):347-352 - PubMed
  68. Microb Ecol Health Dis. 2017 Jun 15;28(1):1335165 - PubMed
  69. Horm Behav. 2007 Apr;51(4):555-67 - PubMed
  70. Genome Med. 2016 Apr 13;8(1):39 - PubMed
  71. Curr Opin Gastroenterol. 2013 Jan;29(1):79-84 - PubMed
  72. Methods Mol Biol. 2018;1849:113-129 - PubMed
  73. Clin Microbiol Infect. 2019 Sep;25(9):1156.e9-1156.e13 - PubMed
  74. Vet Med (Auckl). 2016 May 31;7:71-74 - PubMed
  75. Antimicrob Agents Chemother. 2015 Jan;59(1):650-3 - PubMed
  76. Nature. 2012 Aug 30;488(7413):621-6 - PubMed
  77. Comput Struct Biotechnol J. 2020 Sep 20;18:2629-2638 - PubMed
  78. Nutrients. 2012 Aug;4(8):1095-119 - PubMed
  79. Philos Trans R Soc Lond B Biol Sci. 2020 Sep 28;375(1808):20190604 - PubMed
  80. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5694-9 - PubMed
  81. J Clin Microbiol. 2019 Jan 30;57(2): - PubMed
  82. Microb Ecol. 2011 Apr;61(3):473-85 - PubMed
  83. Trends Ecol Evol. 1996 Sep;11(9):372-7 - PubMed
  84. Curr Opin Allergy Clin Immunol. 2003 Oct;3(5):337-42 - PubMed
  85. J Immunol Res. 2019 Apr 16;2019:1603758 - PubMed
  86. Nat Commun. 2014;5:3114 - PubMed
  87. P T. 2015 Apr;40(4):277-83 - PubMed
  88. PLoS One. 2014 May 20;9(5):e97699 - PubMed
  89. ISME J. 2020 Oct;14(10):2625-2645 - PubMed
  90. Am J Surg. 2018 Oct;216(4):699-705 - PubMed
  91. J Infect Dis. 1979 Jan;139(1):97-101 - PubMed
  92. Horm Behav. 2010 Jan;57(1):76-85 - PubMed
  93. Nat Rev Microbiol. 2018 Sep;16(9):567-576 - PubMed
  94. Nat Rev Microbiol. 2005 Sep;3(9):711-21 - PubMed
  95. Exp Biol Med (Maywood). 2019 Apr;244(6):494-504 - PubMed
  96. Mamm Genome. 2014 Feb;25(1-2):49-74 - PubMed
  97. Cell Metab. 2019 Oct 1;30(4):800-823.e7 - PubMed
  98. Nature. 2000 May 18;405(6784):299-304 - PubMed
  99. Chest. 1999 Mar;115(3 Suppl):34S-41S - PubMed
  100. Clin Gastroenterol Hepatol. 2011 Dec;9(12):1044-9 - PubMed
  101. Nat Microbiol. 2020 Sep;5(9):1067-1068 - PubMed
  102. ISME J. 2009 Nov;3(11):1223-30 - PubMed
  103. Clin Microbiol Rev. 2007 Oct;20(4):593-621 - PubMed

Publication Types

Grant support