Display options
Share it on

Cell Death Dis. 2021 Oct 01;12(10):897. doi: 10.1038/s41419-021-04173-x.

Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis.

Cell death & disease

Jonathan H M van der Meer, Ruben J de Boer, Bartolomeus J Meijer, Wouter L Smit, Jacqueline L M Vermeulen, Sander Meisner, Manon van Roest, Pim J Koelink, Evelien Dekker, Theodorus B M Hakvoort, Jan Koster, Lukas J A C Hawinkels, Jarom Heijmans, Eduard A Struijs, Marja A Boermeester, Gijs R van den Brink, Vanesa Muncan

Affiliations

  1. Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands.
  2. Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands.
  3. Amsterdam UMC, University of Amsterdam, Department of Oncogenomics, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
  4. Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
  5. Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology Metabolism, de Boelelaan 1117, Amsterdam, The Netherlands.
  6. Amsterdam UMC, University of Amsterdam, Department of Surgery, Meibergdreef 9, Amsterdam, The Netherlands.
  7. Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland.
  8. Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands. [email protected].

PMID: 34599156 PMCID: PMC8486827 DOI: 10.1038/s41419-021-04173-x

Abstract

The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.

© 2021. The Author(s).

References

  1. Biochem J. 1998 Nov 15;336 ( Pt 1):1-17 - PubMed
  2. Nature. 2015 Nov 19;527(7578):379-383 - PubMed
  3. Cell. 1990 Jun 1;61(5):759-67 - PubMed
  4. Cancer Res. 1991 Jun 1;51(11):2932-9 - PubMed
  5. J Chromatogr. 1993 Oct 22;620(1):143-8 - PubMed
  6. PLoS One. 2013 Jun 13;8(6):e67021 - PubMed
  7. J Gastroenterol. 2016 Jan;51(1):11-21 - PubMed
  8. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25560-25570 - PubMed
  9. Am J Physiol. 1986 Jul;251(1 Pt 1):G103-10 - PubMed
  10. Int J Radiat Biol. 1990 Jan;57(1):185-99 - PubMed
  11. ACS Chem Biol. 2017 Apr 21;12(4):905-911 - PubMed
  12. Nature. 2013 Jan 24;493(7433):542-6 - PubMed
  13. Int J Cancer. 2010 Jun 15;126(12):2762-72 - PubMed
  14. Oncotarget. 2016 Sep 27;7(39):63679-63689 - PubMed
  15. Arch Surg. 1991 Nov;126(11):1376-81; discussion 1381-2 - PubMed
  16. Cancer. 2004 Feb 15;100(4):826-33 - PubMed
  17. Cell Metab. 2016 Jan 12;23(1):27-47 - PubMed
  18. Sci Rep. 2017 Sep 7;7(1):10814 - PubMed
  19. JAMA Oncol. 2017 Jan 1;3(1):58-66 - PubMed
  20. J Vis Exp. 2015 Apr 20;(98): - PubMed
  21. J Proteome Res. 2008 Jul;7(7):2959-72 - PubMed
  22. Oncol Rep. 2017 Jan;37(1):163-170 - PubMed
  23. Biostat Bioinforma Biomath. 2013 Aug;3(3):71-85 - PubMed
  24. Cell Rep. 2018 May 15;23(7):1962-1976 - PubMed
  25. Sci Adv. 2017 May 19;3(5):e1603204 - PubMed
  26. Nat Cell Biol. 2012 Oct;14(10):1099-1104 - PubMed
  27. Cancer Cell. 2012 Mar 20;21(3):297-308 - PubMed
  28. Sci Rep. 2017 Sep 12;7(1):11253 - PubMed
  29. Mol Cancer Res. 2007 Dec;5(12):1263-75 - PubMed
  30. N Engl J Med. 1986 Dec 25;315(26):1650-9 - PubMed
  31. Dev Cell. 2010 Aug 17;19(2):259-69 - PubMed
  32. Oncotarget. 2016 Dec 13;7(50):82658-82670 - PubMed
  33. Science. 2018 Mar 9;359(6380):1156-1161 - PubMed
  34. Mol Cell Biol. 2006 Nov;26(22):8418-26 - PubMed
  35. Am J Physiol Gastrointest Liver Physiol. 2009 Sep;297(3):G461-70 - PubMed
  36. Nat Med. 2006 Mar;12(3):307-9 - PubMed
  37. Am J Clin Nutr. 2002 Jul;76(1):128-40 - PubMed
  38. Oncotarget. 2016 Nov 8;7(45):73292-73308 - PubMed
  39. Genes Dev. 2004 Jun 15;18(12):1385-90 - PubMed
  40. Clin Cancer Res. 2018 Dec 15;24(24):6331-6344 - PubMed
  41. Cell Mol Gastroenterol Hepatol. 2017 Mar 23;4(1):33-46 - PubMed
  42. Biochem J. 1930;24(3):589-95 - PubMed
  43. Sci Rep. 2018 Aug 14;8(1):12096 - PubMed
  44. J Clin Invest. 2002 Nov;110(10):1539-48 - PubMed
  45. Cell Rep. 2021 May 11;35(6):109101 - PubMed

Publication Types

Grant support