Display options
Share it on

J Anim Ecol. 2021 Sep 20; doi: 10.1111/1365-2656.13593. Epub 2021 Sep 20.

Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore.

The Journal of animal ecology

Gabriel Pigeon, Steve Albon, Leif Egil Loe, Richard Bischof, Christophe Bonenfant, Mads Forchhammer, Robert Justin Irvine, Erik Ropstad, Vebjørn Veiberg, Audun Stien

Affiliations

  1. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
  2. The James Hutton Institute, Aberdeen, UK.
  3. UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Villeurbanne Cedex, France.
  4. The University Centre in Svalbard, Longyearbyen, Norway.
  5. Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
  6. Norwegian Institute for Nature Research, Trondheim, Norway.
  7. Department for Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Tromsø, Norway.

PMID: 34543441 DOI: 10.1111/1365-2656.13593

Abstract

The cost of reproduction on demographic rates is often assumed to operate through changing body condition. Several studies have found that reproduction depresses body mass more if the current conditions are severe, such as high population densities or adverse weather, than under benign environmental conditions. However, few studies have investigated the association between the fitness components and body mass costs of reproduction. Using 25 years of individual-based capture-recapture data from Svalbard reindeer Rangifer tarandus platyrhynchus, we built a novel Bayesian state-space model that jointly estimated interannual change in mass, annual reproductive success and survival, while accounting for incomplete observations. The model allowed us to partition the differential effects of intrinsic and extrinsic factors on both non-reproductive mass change and the body mass cost of reproduction, and to quantify their consequences on demographic rates. Contrary to our expectation, the body mass cost of reproduction (mean = -5.8 kg) varied little between years (CV = 0.08), whereas the between-year variation in body mass changes, that were independent of the previous year's reproductive state, varied substantially (CV = 0.4) in relation to autumn temperature and the amount of rain-on-snow in winter. This body mass loss led to a cost of reproduction on the next reproduction, which was amplified by the same environmental covariates, from a 10% reduction in reproductive success in benign years, to a 50% reduction in harsh years. The reproductive mass loss also resulted in a small reduction in survival. Our results show how demographic costs of reproduction, driven by interannual fluctuations in individual body condition, result from the balance between body mass costs of reproduction and body mass changes that are independent of previous reproductive state. We illustrate how a strong context-dependent fitness cost of reproduction can occur, despite a relatively fixed body mass cost of reproduction. This suggests that female reindeer display a very conservative energy allocation strategy, either aborting their reproductive attempt at an early stage or weaning at a relatively constant cost. Such a strategy might be common in species living in a highly stochastic and food limited environment.

© 2021 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Keywords: Arctic; Bayesian statistics; Capture-Mark-Recapture; imputation; reindeer; reproductive success; survival; time-varying individual covariate

References

  1. Albon, S. D., Irvine, R. J., Halvorsen, O., Langvatn, R., Loe, L. E., Ropstad, E., Veiberg, V., Wal, R., Bjørkvoll, E. M., Duff, E. I., Hansen, B. B., Lee, A. M., Tveraa, T., & Stien, A. (2017). Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Global Change Biology, 23(4), 1374-1389. https://doi.org/10.1111/gcb.13435 - PubMed
  2. Aragón, C. F., Méndez, M., & Escudero, A. (2009). Survival costs of reproduction in a short-lived perennial plant: Live hard, die young. American Journal of Botany, 96(5), 904-911. https://doi.org/10.3732/ajb.0800223 - PubMed
  3. Barboza, P. S., & Parker, K. L. (2008). Allocating protein to reproduction in arctic reindeer and caribou. Physiological and Biochemical Zoology, 81(6), 835-855. https://doi.org/10.1086/590414 - PubMed
  4. Barbraud, C., & Weimerskirch, H. (2005). Environmental conditions and breeding experience affect costs of reproduction in blue petrels. Ecology, 86(3), 682-692. https://doi.org/10.1890/04-0075 - PubMed
  5. Bårdsen, B.-J., Fauchald, P., Tveraa, T., Langeland, K., Yoccoz, N., & Ims, R. A. (2008). Experimental evidence of a risk-sensitive reproductive allocation in along-lived mammal. Ecology, 89(3), 829-837. https://doi.org/10.1007/s00442-009-1537-0 - PubMed
  6. Bårdsen, B.-J., & Tveraa, T. (2012). Density-dependence vs. density-independence - linking reproductive allocation to population abundance and vegetation greenness. Journal of Animal Ecology, 81(2), 364-376. https://doi.org/10.1111/j.1365-2656.2011.01913.x - PubMed
  7. Baron, J.-P., Le Galliard, J.-F., Ferrière, R., & Tully, T. (2013). Intermittent breeding and the dynamics of resource allocation to reproduction, growth and survival. Functional Ecology, 27(1), 173-183. https://doi.org/10.1111/1365-2435.12023 - PubMed
  8. Bjørkvoll, E., Lee, A. M., Grøtan, V., Saether, B.-E., Stien, A., Engen, S., Albon, S., Loe, L. E., & Hansen, B. B. (2016). Demographic buffering of life histories? Implications of the choice of measurement scale. Ecology, 97(1), 40-47. https://doi.org/10.1890/15-0317.1 - PubMed
  9. Bonner, S. J., Morgan, B. J. T., & King, R. (2010). Continuous covariates in mark-recapture-recovery analysis: A comparison of methods. Biometrics, 66(4), 1256-1265. https://doi.org/10.1111/j.1541-0420.2010.01390.x - PubMed
  10. Bonnet, X., Lourdais, O., Shine, R., & Naulleau, G. (2002). Reproduction in a typical capital breeder: Costs, currencies, and complications in the aspic viper. Ecology, 83(8), 2124-2135. https://doi.org/10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2 - PubMed
  11. Bowers, E. K., Sakaluk, S. K., & Thompson, C. F. (2012). Experimentally increased egg production constrains future reproduction of female house wrens. Animal Behaviour, 83(2), 495-500. https://doi.org/10.1016/j.anbehav.2011.11.026 - PubMed
  12. Chambert, T., Rotella, J. J., Higgs, M. D., & Garrott, R. A. (2013). Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate. Ecology and Evolution, 3(7), 2047-2060. https://doi.org/10.1002/ece3.615 - PubMed
  13. Clutton-Brock, T. H. H., Albon, S. D., & Guinness, F. E. E. (1989). Fitness costs of gestation and lactation in wild mammals. Nature, 337(6204), 260-262. https://doi.org/10.1016/S0022-5193(89)80211-5 - PubMed
  14. Creighton, J. C., Heflin, N. D., & Belk, M. C. (2009). Cost of reproduction, resource quality, and terminal investment in a burying beetle. The American Naturalist, 174(5), 673-684. https://doi.org/10.1086/605963 - PubMed
  15. Descamps, S., Boutin, S., McAdam, A. G., Berteaux, D., & Gaillard, J. M. (2009). Survival costs of reproduction vary with age in North American red squirrels. Proceedings of the Royal Society B: Biological Sciences, 276(1659), 1129-1135. https://doi.org/10.1098/rspb.2008.1401 - PubMed
  16. Desprez, M., Gimenez, O., McMahon, C. R., Hindell, M. A., & Harcourt, R. G. (2018). Optimizing lifetime reproductive output: Intermittent breeding as a tactic for females in a long-lived, multiparous mammal. Journal of Animal Ecology, 87(1), 199-211. https://doi.org/10.1111/1365-2656.12775 - PubMed
  17. Douhard, M., Loe, L. E., Stien, A., Bonenfant, C., Irvine, R. J., Veiberg, V., Ropstad, E., & Albon, S. (2016). The influence of weather conditions during gestation on life histories in a wild Arctic ungulate. Proceedings of the Royal Society B: Biological Sciences, 283(1841), 20161760. https://doi.org/10.1098/rspb.2016.1760 - PubMed
  18. Festa-Bianchet, M., Côté, S. D., Hamel, S., & Pelletier, F. (2019). Long-term studies of bighorn sheep and mountain goats reveal fitness costs of reproduction. Journal of Animal Ecology, 88(8), 1118-1133. https://doi.org/10.1111/1365-2656.13002 - PubMed
  19. Festa-Bianchet, M., Gaillard, J., & Jorgenson, J. (1998). Mass-and density-dependent reproductive success and reproductive costs in a capital breeder. The American Naturalist, 152, 367-379. https://doi.org/10.1086/286175 - PubMed
  20. Fischer, B., Dieckmann, U., & Taborsky, B. (2011). When to store energy in a stochastic environment. Evolution, 65(5), 1221-1232. https://doi.org/10.1111/j.1558-5646.2010.01198.x - PubMed
  21. Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press. - PubMed
  22. Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., & Skaugen, T. E. (2011). Temperature and precipitation development at Svalbard 1900-2100. Advances in Meteorology, 2011, 1-14. https://doi.org/10.1155/2011/893790 - PubMed
  23. Gaillard, J.-M., & Yoccoz, N. G. (2003). Temporal variation in survival of mammals: A case of environmental canalization? Ecology, 84(12), 3294-3306. https://doi.org/10.1890/02-0409 - PubMed
  24. Gangloff, E. J., Sparkman, A. M., & Bronikowski, A. M. (2018). Among-individual heterogeneity in maternal behaviour and physiology affects reproductive allocation and offspring life-history traits in the garter snake Thamnophis elegans. Oikos, 127(5), 705-718. https://doi.org/10.1111/oik.04204 - PubMed
  25. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457-472. https://doi.org/10.1214/ss/1177011136 - PubMed
  26. Gimenez, O., Viallefont, A., Charmantier, A., Pradel, R., Cam, E., Brown, C. R., Anderson, M. D., Brown, M. B., Covas, R., & Gaillard, J.-M. (2008). The risk of flawed inference in evolutionary studies when detectability is less than one. The American Naturalist, 172(3), 441-448. https://doi.org/10.1086/589520 - PubMed
  27. Golet, G. H., & Irons, D. B. (1999). Raising young reduces body condition and fat stores in black-legged kittiwakes. Oecologia, 120(4), 530-538. https://doi.org/10.1007/s004420050887 - PubMed
  28. Hamel, S., Côté, S. D., & Festa-Bianchet, M. (2010). Maternal characteristics and environment affect the costs of reproduction in female mountain goats. Ecology, 91(7), 2034-2043. https://doi.org/10.1890/09-1311.1 - PubMed
  29. Hamel, S., Côté, S. D., Gaillard, J.-M., & Festa-Bianchet, M. (2009). Individual variation in reproductive costs of reproduction: High-quality females always do better. Journal of Animal Ecology, 78(1), 143-151. https://doi.org/10.1111/j.1365-2656.2008.01459.x - PubMed
  30. Hamel, S., Gaillard, J.-M., Douhard, M., Festa-Bianchet, M., Pelletier, F., & Yoccoz, N. G. (2018). Quantifying individual heterogeneity and its influence on life-history trajectories: Different methods for different questions and contexts. Oikos, 127(5), 687-704. https://doi.org/10.1111/oik.04725 - PubMed
  31. Hamel, S., Gaillard, J.-M., Yoccoz, N. G., Loison, A., Bonenfant, C., & Descamps, S. (2010). Fitness costs of reproduction depend on life speed: Empirical evidence from mammalian populations. Ecology Letters, 13(7), 915-935. https://doi.org/10.1111/j.1461-0248.2010.01478.x - PubMed
  32. Hansen, B. B., Gamelon, M., Albon, S. D., Lee, A. M., Stien, A., Irvine, R. J., Saether, B.-E., Loe, L. E., Ropstad, E., Veiberg, V., & Grøtan, V. (2019). More frequent extreme climate events stabilize reindeer population dynamics. Nature Communications, 10(1), 1616. https://doi.org/10.1038/s41467-019-09332-5 - PubMed
  33. Hansen, B. B., Isaksen, K., Benestad, R. E., Kohler, J., Pedersen, Å. Ø., Loe, L. E., Coulson, S. J., Larsen, J. O., & Varpe, Ø. (2014). Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters, 9(11), 114021. https://doi.org/10.1088/1748-9326/9/11/114021 - PubMed
  34. Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: The devil in the details. Trends in Ecology & Evolution, 22(2), 80-86. https://doi.org/10.1016/j.tree.2006.10.008 - PubMed
  35. King, R., Brooks, S. P., & Coulson, T. (2008). Analyzing complex capture-recapture data in the presence of individual and temporal covariates and model uncertainty. Biometrics, 64(4), 1187-1195. https://doi.org/10.1111/j.1541-0420.2008.00991.x - PubMed
  36. Lebreton, J.-D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecological Monographs, 62(1), 67-118. https://doi.org/10.2307/2937171 - PubMed
  37. Lee, A. M., Bjørkvoll, E. M., Hansen, B. B., Albon, S. D., Stien, A., Saether, B.-E., Engen, S., Veiberg, V., Loe, L. E., & Grøtan, V. (2015). An integrated population model for a long-lived ungulate: More efficient data use with Bayesian methods. Oikos, 124(6), 806-816. https://doi.org/10.1111/oik.01924 - PubMed
  38. Lemaître, J.-F., & Gaillard, J.-M. (2017). Reproductive senescence: New perspectives in the wild: Reproductive senescence in the wild. Biological Reviews, 92(4), 2182-2199. https://doi.org/10.1111/brv.12328 - PubMed
  39. Loe, L. E., Irvine, R. J., Bonenfant, C., Stien, A., Langvatn, R., Albon, S. D., Mysterud, A., & Stenseth, N. C. (2006). Testing five hypotheses of sexual segregation in an arctic ungulate. Journal of Animal Ecology, 75(2), 485-496. https://doi.org/10.1111/j.1365-2656.2006.01069.x - PubMed
  40. Loe, L. E., Liston, G. E., Pigeon, G., Barker, K., Horvitz, N., Stien, A., Forchhammer, M., Getz, W. M., Irvine, R. J., Lee, A., Movik, L. K., Mysterud, A., Pedersen, Å. Ø., Reinking, A. K., Ropstad, E., Trondrud, L. M., Tveraa, T., Veiberg, V., Hansen, B. B., & Albon, S. D. (2021). The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Global Change Biology, 27(5), 993-1002. https://doi.org/10.1111/gcb.15458 - PubMed
  41. Loe, L. E., Pigeon, G., Albon, S. D., Giske, P. E., Irvine, R. J., Ropstad, E., Stien, A., Veiberg, V., & Mysterud, A. (2019). Antler growth as a cost of reproduction in female reindeer. Oecologia, 189(3), 601-609. https://doi.org/10.1007/s00442-019-04347-7 - PubMed
  42. Lourdais, O., Bonnet, X., Shine, R., Denardo, D., Naulleau, G., & Guillon, M. (2002). Capital-breeding and reproductive effort in a variable environment: A longitudinal study of a viviparous snake. Journal of Animal Ecology, 71(3), 470-479. https://doi.org/10.1046/j.1365-2656.2002.00612.x - PubMed
  43. Macdonald, K. R., Rotella, J. J., Garrott, R. A., & Link, W. A. (2020). Sources of variation in maternal allocation in a long-lived mammal. Journal of Animal Ecology, 89(8), 1927-1940. https://doi.org/10.1111/1365-2656.13243 - PubMed
  44. Martin, T. E. (1995). Avian life history evolution in relation to nest sites, nest predation, and food. Ecological Monographs, 65(1), 101-127. https://doi.org/10.2307/2937160 - PubMed
  45. McMahon, C. R., Harcourt, R. G., Burton, H. R., Daniel, O., & Hindell, M. A. (2017). Seal mothers expend more on offspring under favourable conditions and less when resources are limited. Journal of Animal Ecology, 86(2), 359-370. https://doi.org/10.1111/1365-2656.12611 - PubMed
  46. Merilä, J., & Hemborg, C. (2000). Fitness and feather wear in the collared flycatcher Ficedula albicollis. Journal of Avian Biology, 31(4), 504-510. https://doi.org/10.1034/j.1600-048X.2000.310410.x - PubMed
  47. Milner, J. M., van Beest, F. M., Solberg, E. J., & Storaas, T. (2013). Reproductive success and failure: The role of winter body mass in reproductive allocation in Norwegian moose. Oecologia, 172(4), 995-1005. https://doi.org/10.1007/s00442-012-2547-x - PubMed
  48. Moyes, K., Coulson, T., Morgan, B. J. T. T., Donald, A., Morris, S. J., & Clutton-Brock, T. H. (2006). Cumulative reproduction and survival costs in female red deer. Oikos, 115(2), 241-252. https://doi.org/10.1111/j.2006.0030-1299.15200.x - PubMed
  49. Moyes, K., Morgan, B., Morris, A., Morris, S., Clutton-Brock, T., & Coulson, T. (2011). Individual differences in reproductive costs examined using multi-state methods. The Journal of Animal Ecology, 80(2), 456-465. https://doi.org/10.1111/j.1365-2656.2010.01789.x - PubMed
  50. Mysterud, A., Yoccoz, N. G., Stenseth, N. C., & Langvatn, R. (2001). Effects of age, sex and density on body weight of Norwegian red deer: Evidence of density-dependent senescence. Proceedings of the Royal Society B: Biological Sciences, 268(1470), 911-919. https://doi.org/10.1098/rspb.2001.1585 - PubMed
  51. Nilsson, J.-Ǻ., & Svensson, E. (1996). The cost of reproduction: A new link between current reproductive effort and future reproductive success. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1371), 711-714. https://doi.org/10.1098/rspb.1996.0106 - PubMed
  52. Omsjoe, E. H., Stien, A., Irvine, J., Albon, S. D., Dahl, E., Thoresen, S. I., Rustad, E., & Ropstad, E. (2009). Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Canadian Journal of Zoology, 87(1), 73-85. https://doi.org/10.1139/Z08-139 - PubMed
  53. Oosthuizen, W. C., Postma, M., Altwegg, R., Nevoux, M., Pradel, R., Bester, M. N., & Bruyn, P. J. N. (2019). Individual heterogeneity in life-history trade-offs with age at first reproduction in capital breeding elephant seals. Population Ecology, 61(4), 421-435. https://doi.org/10.1002/1438-390X.12015 - PubMed
  54. Paterson, J. T., Rotella, J. J., Link, W. A., & Garrott, R. (2018). Variation in the vital rates of an Antarctic marine predator: The role of individual heterogeneity. Ecology, 99(10), 2385-2396. https://doi.org/10.1002/ecy.2481 - PubMed
  55. Peeters, B., Pedersen, Å. Ø., Loe, L. E., Isaksen, K., Veiberg, V., Stien, A., Kohler, J., Gallet, J.-C., Aanes, R., & Hansen, B. B. (2019). Spatiotemporal patterns of rain-on-snow and basal ice in high Arctic Svalbard: Detection of a climate-cryosphere regime shift. Environmental Research Letters, 14(1), 015002. https://doi.org/10.1088/1748-9326/aaefb3 - PubMed
  56. Pelletier, F., Réale, D., Garant, D., Coltman, D. W., & Festa-Bianchet, M. (2007). Selection on heritable seasonal phenotypic plasticity of body mass. Evolution, 61(8), 1969-1979. https://doi.org/10.1111/j.1558-5646.2007.00160.x - PubMed
  57. Pigeon, G., Albon, S., Loe, L. E., Bischof, R., Bonenfant, C., Forchhammer, M., Irvine, J., Ropstad, E., Veiberg, V., & Stien, A. (2021). Data from: Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. Dryad Digital Repository, https://doi.org/10.5061/dryad.80gb5mkrj - PubMed
  58. Plumel, M. I., Stier, A., Thiersé, D., van Dorsselaer, A., Criscuolo, F., & Bertile, F. (2014). Litter size manipulation in laboratory mice: An example of how proteomic analysis can uncover new mechanisms underlying the cost of reproduction. Frontiers in Zoology, 11(1), 1-13. https://doi.org/10.1186/1742-9994-11-41 - PubMed
  59. Plummer, M. (2010). JAGS version 2.0 manual. International Agency for Research on Cancer. http://mcmc-jags.sourceforge.net/ - PubMed
  60. Primack, R. B., & Hall, P. (1990). Costs of reproduction in the pink lady's slipper orchid: A four-year experimental study. The American Naturalist, 136(5), 638-656. https://doi.org/10.1086/285120 - PubMed
  61. R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ - PubMed
  62. Reinke, B. A., Hoekstra, L., Bronikowski, A. M., Janzen, F. J., & Miller, D. (2020). Joint estimation of growth and survival from mark-recapture data to improve estimates of senescence in wild populations. Ecology, 101(1). https://doi.org/10.1002/ecy.2877 - PubMed
  63. Schwenke, R. A., Lazzaro, B. P., & Wolfner, M. F. (2016). Reproduction-immunity trade-offs in insects. Annual Review of Entomology, 61(1), 239-256. https://doi.org/10.1146/annurev-ento-010715-023924 - PubMed
  64. Smout, S., King, R., & Pomeroy, P. (2020). Environment-sensitive mass changes influence breeding frequency in a capital breeding marine top predator. Journal of Animal Ecology, 89(2), 384-396. https://doi.org/10.1111/1365-2656.13128 - PubMed
  65. Stearns, S. C. (1992). The evolution of life histories. Oxford University Press. - PubMed
  66. Su, Y., & Yajima, M. (2015). R2jags: Using R to run “JAGS”. R package version 0.5-7. R Foundation for Statistical Computing. - PubMed
  67. Tavecchia, G., Coulson, T., Morgan, B. J. T., Pemberton, J. M., Pilkington, J. C., Gulland, F. M. D., & Clutton-Brock, T. H. (2005). Predictors of reproductive cost in female Soay sheep. Journal of Animal Ecology, 74(2), 201-213. https://doi.org/10.1111/j.1365-2656.2005.00916.x - PubMed
  68. Trippel, E. A., Butts, I. A. E., Babin, A., Neil, S. R. E., Feindel, N. J., & Benfey, T. J. (2014). Effects of reproduction on growth and survival in Atlantic cod, Gadus morhua, assessed by comparison to triploids. Journal of Experimental Marine Biology and Ecology, 451, 35-43. https://doi.org/10.1016/j.jembe.2013.10.030 - PubMed
  69. Tuomi, J., Hakala, T., & Haukioja, E. (1983). Alternative concepts of reproductive effort, costs of reproduction, and selection in life-history evolution. American Zoologist, 23(1), 25-34. https://doi.org/10.1093/icb/23.1.25 - PubMed
  70. Van der Wal, R., & Stien, A. (2014). High-arctic plants like it hot: A long-term investigation of between-year variability in plant biomass. Ecology, 95(12), 3414-3427. https://doi.org/10.1890/14-0533.1 - PubMed
  71. van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128(1), 137-142. https://doi.org/10.1086/284547 - PubMed
  72. Veiberg, V., Loe, L. E., Albon, S. D., Irvine, R. J., Tveraa, T., Ropstad, E., & Stien, A. (2017). Maternal winter body mass and not spring phenology determine annual calf production in an Arctic herbivore. Oikos, 126(7), 980-987. https://doi.org/10.1111/oik.03815 - PubMed
  73. Weladji, R. B., Holand, Ø., Gaillard, J.-M., Yoccoz, N. G., Mysterud, A., Nieminen, M., & Stenseth, N. C. (2010). Age-specific changes in different components of reproductive output in female reindeer: Terminal allocation or senescence? Oecologia, 162(1), 261-271. https://doi.org/10.1007/s00442-009-1443-5 - PubMed
  74. Weladji, R. B., Loison, A., Gaillard, J.-M., Holand, Ø., Mysterud, A., Yoccoz, N. G., Nieminen, M., & Stenseth, N. C. (2008). Heterogeneity in individual quality overrides costs of reproduction in female reindeer. Oecologia, 156(1), 237-247. https://doi.org/10.1007/s00442-008-0961-x - PubMed
  75. Williams, G. C. (1966). Natural selection, the costs of reproduction, and a refinement of lack's principle. The American Naturalist, 100(916), 687-690. https://doi.org/10.1086/282461 - PubMed
  76. Zhang, Y., & Hood, W. R. (2016). Current versus future reproduction and longevity: A re-evaluation of predictions and mechanisms. Journal of Experimental Biology, 219(20), 3177-3189. https://doi.org/10.1242/jeb.132183 - PubMed

Publication Types

Grant support