Display options
Share it on

Mol Ecol. 2021 Dec;30(24):6743-6758. doi: 10.1111/mec.16185. Epub 2021 Oct 04.

Extra-pair paternity in the wood-feeding cockroach Cryptocercus punctulatus Scudder: Social but not genetic monogamy.

Molecular ecology

Hajime Yaguchi, Itaru Kobayashi, Kiyoto Maekawa, Christine A Nalepa

Affiliations

  1. Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
  2. Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
  3. School of Science, University of Toyama, Toyama, Japan.
  4. Graduate School of Science, The University of Tokyo, Tokyo, Japan.
  5. Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan.
  6. Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA.

PMID: 34543485 DOI: 10.1111/mec.16185

Abstract

Subsocial Cryptocercus cockroaches are the sister group to termites and considered to be socially monogamous. Because genetic monogamy is a suggested requirement for evolution of cooperative breeding/eusociality, particularly in hymenopterans, clarification of the mating biology of Cryptocercus would help illuminate evolutionary trends in eusocial insects. To investigate possible extra-pair paternity in C. punctulatus, microsatellite markers were used to analyse offspring parentage, the stored sperm in females and results of experimental manipulation of sperm competition. Extra-pair paternity was common in field-collected families, but a lack of maternal alleles in several nymphs suggests sampling error or adoption. Isolating prereproductive pairs and assaying subsequently produced nymphs confirmed that nymphs lacked alleles from the pair male in 40% of families, with extra-pair male(s) siring 27%-77% of nymphs. Sperm of extra-pair males was detected in the spermatheca of 51% of paired prereproductive females. Mate switching and surgical manipulation of male mating ability indicated a tendency towards last male sperm precedence. Overall, the results demonstrate that about half of young females are serially monogamous during their maturational year, but bond, overwinter and produce their only set of offspring in company of the last mated male (=pair male). Repeated mating by the pair male increases the number of nymphs sired, but because many females use stored sperm of previous copulatory partners to fertilize eggs, pair males extend parental care to unrelated nymphs. The results suggest that genetic monogamy either developed in the termite ancestor after splitting from the Cryptocercus lineage, or that genetic monogamy may not be a strict prerequisite for the evolution of termite eusociality.

© 2021 John Wiley & Sons Ltd.

Keywords: eusociality; paternity; semelparity; serial monogamy; subsociality; termite

References

  1. Alonzo, S. H., & Klug, H. (2012). Paternity, maternity, and parental care. In N. J. Royle, P. T. Smiseth, & M. Kölliker (Eds.), The Evolution of Parental Care (pp. 189-205). Oxford University Press. - PubMed
  2. Arbuthnott, D., Crespi, B. J., & Schwander, T. (2015). Female stick insects mate multiply to find compatible mates. The American Naturalist, 186, 519-530. https://doi.org/10.1086/682675 - PubMed
  3. Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, Behavior, and Natural History. Johns Hopkins University Press. - PubMed
  4. Birkhead, T. R., Atkin, L., & Møller, A. (1987). Copulation behaviour of birds. Behaviour, 101(1-3), 101-138. - PubMed
  5. Bonin A.Bellemain E.Bronken Eidesen P.Pompanon F.Brochmann C., & Taberlet P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13, 3261-3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x - PubMed
  6. Boomsma, J. J. (2007). Kin selection versus sexual selection: why the ends do not meet. Current Biology, 17, R673-R683. https://doi.org/10.1016/j.cub.2007.06.033 - PubMed
  7. Boomsma, J. J. (2009). Lifetime monogamy and the evolution of eusociality. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3191-3207. https://doi.org/10.1098/rstb.2009.0101 - PubMed
  8. Boulton, R. A., & Shuker, D. M. (2013). Polyandry. Current Biology, 23, R1080-R1081. https://doi.org/10.1016/j.cub.2013.09.042 - PubMed
  9. Burdfield-Steel, E. R., Auty, S., & Shuker, D. M. (2015). Do the benefits of polyandry scale with outbreeding? Behavioral Ecology, 26, 1423-1431. https://doi.org/10.1093/beheco/arv103 - PubMed
  10. Carter, C. S., & Perkeybile, A. M. (2018). The monogamy paradox: What do love and sex have to do with it? Frontiers in Ecology and Evolution, 6, 202. https://doi.org/10.3389/fevo.2018.00202 - PubMed
  11. Cleveland, L. R., Hall, S. R., Sanders, E. P., & Collier, J. (1934). The wood feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences, 17, 185-382. https://doi.org/10.2307/25058198 - PubMed
  12. Davies, N. B. (1992). Dunnock Behaviour and Social Evolution. Oxford University Press. - PubMed
  13. Dillard, J. R. (2017). High rates of extra-pair paternity in a socially monogamous beetle with biparental care. Ecological Entomology, 42, 1-10. https://doi.org/10.1111/een.12346 - PubMed
  14. Dillard, J. R., & Westneat, D. F. (2016). Disentangling the correlated evolution of monogamy and cooperation. Trends in Ecology & Evolution, 31, 503-513. https://doi.org/10.1016/j.tree.2016.03.009 - PubMed
  15. Djeraes, M., Klass, K.-D., & Eggleton, P. (2015). Identifying possible sister groups of Cryptocercidae + Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molecular Phylogenetics and Evolution, 84, 284-303. https://doi.org/10.1016/j.ympev.2014.08.019 - PubMed
  16. Eliassen, S., & Kokko, H. (2008). Current analyses do not resolve whether extra-pair paternity is male or female driven. Behavioral Ecology and Sociobiology, 62, 1795-1804. https://doi.org/10.1007/s00265-008-0608-2 - PubMed
  17. Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215-223. https://www.jstor.org/stable/1744497. https://doi.org/10.1126/science.327542 - PubMed
  18. Feldhaar, H., & Schauer, B. (2018). Dispersal of saproxylic insects. In M. Ulyshen (Ed.), Saproxylic Insects, Diversity, Ecology and Conservation (pp. 515-546), Zoological Monographs, Vol 1. Springer International. https://doi.org/10.1007/978-3-319-75937-1_15 - PubMed
  19. Field, J., & Toyoizumi, H. (2020). The evolution of eusociality: no risk-return tradeoff but the ecology matters. Ecology Letters, 23, 518-526. https://doi.org/10.1111/ele.13452 - PubMed
  20. Goudet, J. (2005). HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186. https://doi.org/10.1111/j.1471-8286.2004.00828.x - PubMed
  21. Grant, R. A., & Montrose, V. T. (2018). It's a man's world: mate guarding and the evolution of patriarchy. Mankind Quarterly, 58(3), 384-418. https://doi.org/10.46469/mq.2018.58.3.2 - PubMed
  22. Griffin, A. S., Alonzo, S. H., & Cornwallis, C. K. (2013). Why do cuckolded males provide paternal care? PLoS Biology, 11, e1001520. https://doi.org/10.1371/journal.pbio.1001520 - PubMed
  23. Hellriegel, B., & Ward, P. I. (1998). Complex female reproductive tract morphology: its possible use in postcopulatory female choice. Journal of Theoretical Biology, 190, 179-186. https://doi.org/10.1006/jtbi.1997.0546 - PubMed
  24. Henshaw, J. M. (2018). Finding the one: optimal choosiness under sequential mate choice. Journal of Evolutionary Biology, 31, 1193-1203. https://doi.org/10.1111/jeb.13296 - PubMed
  25. Herberstein, M., Schneider, J., Uhl, G., & Michalik, P. (2011). Sperm dynamics in spiders. Behavioral Ecology, 22, 692-695. https://doi.org/10.1093/beheco/arr053 - PubMed
  26. Hughes, W. O., Oldroyd, B. P., Beekman, M., & Ratnieks, F. L. (2008). Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science, 320, 1213-1216. https://doi.org/10.1126/science.1156108 - PubMed
  27. Hunter, F. M., Petrie, M., Otronen, M., Birkhead, T., & Møller, A. P. (1993). Why do females copulate repeatedly with one male? Trends in Ecology & Evolution, 8, 21-26. https://doi.org/10.1016/0169-5347(93)90126-A - PubMed
  28. Johnson, P. C. D., & Haydon, D. T. (2007). Maximum likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics, 175, 827-842. https://doi.org/10.1534/genetics.106.064618 - PubMed
  29. Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inferencefrom multilocus genotype data. Molecular Ecology Resources, 10, 551-555. https://doi.org/10.1111/j.1755-0998.2009.02787.x - PubMed
  30. Klass, K.-D., Nalepa, C., & Lo, N. (2008). Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. Molecular Phylogenetics and Evolution, 46, 809-817. https://doi.org/10.1016/j.ympev.2007.11.028 - PubMed
  31. Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919-948. https://doi.org/10.1111/j.1420-9101.2008.01540.x - PubMed
  32. Kokko, H., & Rankin, D. J. (2006). Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 319-334. https://doi.org/10.1098/rstb.2005.1784 - PubMed
  33. Kupfer, A., Wilkinson, M., Gower, D. J., Müller, H., & Jehle, R. (2008). Care and parentage in a skin-feeding caecilian amphibian. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309, 460-467. https://doi.org/10.1002/jez.475 - PubMed
  34. Kvarnemo, C. (2018). Why do some animals mate with one partner rather than many? A review of causes and consequences of monogamy. Biological Reviews, 93, 1795-1812. https://doi.org/10.1111/brv.12421 - PubMed
  35. Laird, G., Gwynne, D., & Andrade, M. (2004). Extreme repeated mating as a counter-adaptation to sexual conflict? Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S402-S404. https://doi.org/10.1098/rsbl.2004.0198 - PubMed
  36. Leggett, H. C., El Mouden, C., Wild, G., & West, S. (2012). Promiscuity and the evolution of cooperative breeding. Proceedings of the Royal Society B: Biological Sciences, 279, 1405-1411. https://doi.org/10.1098/rspb.2011.1627 - PubMed
  37. Lukas, D., & Clutton-Brock, T. (2012). Cooperative breeding and monogamy in mammalian societies. Proceedings of the Royal Society B: Biological Sciences, 279, 2151-2156. https://doi.org/10.1098/rspb.2011.2468 - PubMed
  38. Macdonald, D. W., Campbell, L. A., Kamler, J. F., Marino, J., Werhahn, G., & Sillero-Zubiri, C. (2019). Monogamy: Cause, consequence or corollary of success in wild canids? Frontiers in Ecology and Evolution, 7, 341. https://doi.org/10.3389/fevo.2019.00341 - PubMed
  39. Maekawa, K., Matsumoto, T., & Nalepa, C. (2008). Social biology of the wood-feeding cockroach genus Salganea (Dictyoptera, Blaberidae, Panesthiinae): did ovoviviparity prevent the evolution of eusociality in the lineage? Insectes Sociaux, 55, 107-114. https://doi.org/10.1007/s00040-008-0997-2 - PubMed
  40. Mckittrick, F. A. (1964). Evolutionary Studies of Cockroaches. Cornell University Agricultural Experiment Station. - PubMed
  41. Mulder, R. A., Dunn, P. O., Cockburn, A., Cohen, K. A. L., & Howell, M. J. (1994). Helpers liberate female fairy-wrens from constraints on extra-pair mate choice. Proceedings of the Royal Society of London. Series B: Biological Sciences, 255, 223-229. https://doi.org/10.1098/rspb.1994.0032 - PubMed
  42. Musapa, M., Kumwenda, T., Mkulama, M., Chishimba, S., Norris, D. E., Thuma, P. E., & Mharakurwa, S. (2013). A simple Chelex protocol for DNA extraction from Anopheles spp. Journal of Visualized Experiments, 71, e3281. - PubMed
  43. Nalepa, C. A. (1984). Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 14, 273-279. https://doi.org/10.1007/BF00299498 - PubMed
  44. Nalepa, C. A. (1988a). Reproduction in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae): mating, oviposition, and hatch. Annals of the Entomological Society of America, 81, 637-641. https://doi.org/10.1093/aesa/81.4.637 - PubMed
  45. Nalepa, C. A. (1988b). Cost of parental care in the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 23, 135-140. https://doi.org/10.1007/BF00300348 - PubMed
  46. Nalepa, C. A. (2003). Evolution in the genus Cryptocercus (Dictyoptera: Cryptocercidae): no evidence of differential adaptation to hosts or elevation. Biological Journal of the Linnean Society, 80, 223-233. https://doi.org/10.1046/j.1095-8312.2003.00225.x - PubMed
  47. Nalepa, C. A. (2011). Body size and termite evolution. Evolutionary Biology, 38, 243-257. https://doi.org/10.1007/s11692-011-9121-z - PubMed
  48. Nalepa, C. A. (2016). ‘Cost’of proctodeal trophallaxis in extant termite individuals has no relevance in analysing the origins of eusociality. Ecological Entomology, 41, 27-30. https://doi.org/10.1111/een.12276 - PubMed
  49. Nalepa, C., & Arellano, C. (2016). Parental social environment alters development of nutritionally independent nymphs in Cryptocercus punctulatus (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 70, 881-887. https://doi.org/10.1007/s00265-016-2110-6 - PubMed
  50. Nalepa, C. A., & Bell, W. J. (1997). Postovulation parental investment and parental care in cockroaches. In J. Choe, & B. J. Crespi (Eds.), The Evolution of Social Behavior in Insects And Arachnids (pp. 26-51). Cambridge University Press. - PubMed
  51. Nalepa, C., Byers, G., Bandi, C., & Sironi, M. (1997). Description of Cryptocercus clevelandi (Dictyoptera: Cryptocercidae) from the northwestern United States, molecular analysis of bacterial symbionts in its fat body, and notes on biology, distribution, and biogeography. Annals of the Entomological Society of America, 90, 416-424. https://doi.org/10.1093/aesa/90.4.416 - PubMed
  52. Nalepa, C., & Grayson, K. (2011). Surface activity of the xylophagous cockroach Cryptocercus punctulatus (Dictyoptera: Cryptocercidae) based on collections from pitfall traps. Annals of the Entomological Society of America, 104, 364-368. https://doi.org/10.1603/AN10133 - PubMed
  53. Nalepa, C. A., Maekawa, K., Shimada, K., Saito, Y., Arellano, C., & Matsumoto, T. (2008). Altricial development in subsocial wood-feeding cockroaches. Zoological Science, 25, 1190-1198. https://doi.org/10.2108/zsj.25.1190 - PubMed
  54. Nalepa, C. A., & Mullins, D. E. (1992). Initial reproductive investment and parental body size in Cryptocercus punctulatus (Dictyoptera: Cryptocercidae). Physiological Entomology, 17, 255-259. https://doi.org/10.1111/j.1365-3032.1992.tb01019.x - PubMed
  55. Nalepa, C. A., & Mullins, D. E. (2011). Repeated copulation in the wood-feeding cockroach Cryptocercus punctulatus does not influence number or development of offspring. Journal of Insect Behavior, 24, 44-54. https://doi.org/10.1007/s10905-010-9235-7 - PubMed
  56. Nalepa, C. A., Shimada, K., Maekawa, K., & Luykx, P. (2017). Distribution of karyotypes of the Cryptocercus punctulatus species complex (Blattodea: Cryptocercidae) in Great Smoky Mountains National Park. Journal of Insect Science, 17(3), 69, 1-11. https://doi.org/10.1093/jisesa/iex045 - PubMed
  57. Nonacs, P. (2011). Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evolutionary Biology, 11, 1-9. https://doi.org/10.1186/1471-2148-11-58 - PubMed
  58. Nonacs, P. (2014). Resolving the evolution of sterile worker castes: a window on the advantages and disadvantages of monogamy. Biology Letters, 10, 20140089. https://doi.org/10.1098/rsbl.2014.0089 - PubMed
  59. Nonacs, P. (2019). Hamilton's rule is essential but insufficient for understanding monogamy's role in social evolution. Royal Society Open Science, 6, 180913. https://doi.org/10.1098/rsos.180913 - PubMed
  60. Olson, V., Liker, A., Freckleton, R., & Szekely, T. (2008). Parental conflict in birds: comparative analyses of offspring development, ecology and mating opportunities. Proceedings of the Royal Society B: Biological Sciences, 275, 301-307. https://doi.org/10.1098/rspb.2007.1395 - PubMed
  61. Orr, T. J., & Brennan, P. L. (2015). Sperm storage: distinguishing selective processes and evaluating criteria. Trends in Ecology & Evolution, 30, 261-272. https://doi.org/10.1016/j.tree.2015.03.006 - PubMed
  62. Park, Y., & Choe, J. (2003). Territorial behavior of the Korean wood-feeding cockroach, Cryptocercus kyebangensis. Journal of Ethology, 21, 79-85. https://doi.org/10.1007/s10164-002-0081-8 - PubMed
  63. Park, Y. C., Grandcolas, P., & Choe, J. C. (2002). Colony composition, social behavior and some ecological characteristics of the Korean wood-feeding cockroach (Cryptocercus kyebangensis). Zoological Science, 19, 1133-1139. https://doi.org/10.2108/zsj.19.1133 - PubMed
  64. Parker, G. A. (1990). Sperm competition games: sneaks and extra-pair copulations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 242, 127-133. https://doi.org/10.1098/rspb.1990.0115 - PubMed
  65. Parker, G. A., & Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews, 85, 897-934. https://doi.org/10.1111/j.1469-185X.2010.00140.x - PubMed
  66. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/bioinformatics/bts460 - PubMed
  67. Petrie, M. (1992). Copulation frequency in birds: why do females copulate more than once with the same male? Animal Behaviour, 44, 790-792. https://doi.org/10.1016/S0003-3472(05)80309-4 - PubMed
  68. Reichard, U. H. (2003). Monogamy: past and present. In U. H. Reichard, & C. Boesch (Eds.), Monogamy: Mating Strategies And Partnerships in Birds, Humans and Other Mammals (pp. 3-25). Cambridge University Press. - PubMed
  69. Ritter, H. (1964). Defense of mate and mating chamber in a wood roach. Science, 143, 1459-1460. https://doi.org/10.1126/science.143.3613.1459 - PubMed
  70. Rodrı́guez-Gironés, M. A., & Enquist, M. (2001). The evolution of female sexuality. Animal Behaviour, 61, 695-704. https://doi.org/10.1006/anbe.2000.1630 - PubMed
  71. Šálek, M. (2015). Frequent within-pair copulations during incubation in Northern Lapwings Vanellus vanellus are consistent with the sperm competition hypothesis. Journal of Ornithology, 156, 737-742. https://doi.org/10.1007/s10336-015-1179-4 - PubMed
  72. Schlicht, L., Valcu, M., & Kempenaers, B. (2015). Spatial patterns of extra-pair paternity: beyond paternity gains and losses. Journal of Animal Ecology, 84, 518-531. https://doi.org/10.1111/1365-2656.12293 - PubMed
  73. Schuster, J. C., & Schuster, L. B. (1997). The evolution of social behavior in Passalidae (Coleoptera). In J. Choe, & B. J. Crespi (Eds.), The Evolution of Social Behavior in Insects And Arachnids (pp. 260-269). Cambridge University Press. - PubMed
  74. Seelinger, G., & Seelinger, U. (1983). On the social organisation, alarm and fighting in the primitive cockroach Cryptocercus punctulatus Scudder. Zeitschrift Für Tierpsychologie, 61, 315-333. https://doi.org/10.1111/j.1439-0310.1983.tb01347.x - PubMed
  75. Sefc, K. M., Mattersdorfer, K., Sturmbauer, C., & Koblmueller, S. (2008). High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Molecular Ecology, 17, 2531-2543. https://doi.org/10.1111/j.1365-294X.2008.03763.x - PubMed
  76. Sobral, G. (2018). Extra-pair copulation. In J. Vonk, & T. K. Shackelford (Eds.), Encyclopedia of Animal Cognition and Behavior. Springer Nature. - PubMed
  77. Suzuki, S. (2013). Biparental care in insects: Paternal care, life history, and the function of the nest. Journal of Insect Science, 13(1), 131. https://doi.org/10.1673/031.013.13101 - PubMed
  78. Tallamy, D. W., & Wood, T. K. (1986). Convergence patterns in subsocial insects. Annual Review of Entomology, 31, 369-390. https://doi.org/10.1146/annurev.en.31.010186.002101 - PubMed
  79. West, S. A., Pen, I., & Griffin, A. S. (2002). Cooperation and competition between relatives. Science, 296, 72-75. https://doi.org/10.1126/science.1065507 - PubMed
  80. Wickman, P.-O., & Rutowski, R. L. (1999). The evolution of mating dispersion in insects. Oikos, 84, 463-472. https://doi.org/10.2307/3546425 - PubMed
  81. Yaguchi, H., Hayashi, Y., Tohoku, T., Nalepa, C. A., & Maekawa, K. (2017). Genetic studies indicate that most field-collected woodroach pairs are unrelated. Insect Science, https://doi.org/10.1111/1744-7917.12358 - PubMed
  82. Yezerinac, S. M., Weatherhead, P. J., & Boag, P. T. (1996). Cuckoldry and lack of parentage-dependent paternal care in yellow warblers: a cost-benefit approach. Animal Behaviour, 52, 821-832. https://doi.org/10.1006/anbe.1996.0227 - PubMed

Publication Types

Grant support