Display options
Share it on

Immun Inflamm Dis. 2021 Dec;9(4):1656-1669. doi: 10.1002/iid3.518. Epub 2021 Oct 12.

Immunomodulation of endothelial cells induced by macrolide therapy in a model of septic stimulation.

Immunity, inflammation and disease

Stéphanie Pons, Eden Arrii, Marine Arnaud, Maud Loiselle, Juliette Ferry, Manel Nouacer, Julien Lion, Shannon Cohen, Nuala Mooney, Lara Zafrani

Affiliations

  1. Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France.
  2. Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Hospital, GRC 29, AP-HP, DMU DREAM, Sorbonne University, Paris, France.
  3. Medical Intensive Care Unit, AP-HP, Saint-Louis Teaching Hospital, Paris, France.

PMID: 34636179 PMCID: PMC8589380 DOI: 10.1002/iid3.518

Abstract

OBJECTIVES: Sepsis is defined as the host's inflammatory response to a life-threatening infection. The endothelium is implicated in immunoregulation during sepsis. Macrolides have been proposed to display immunomodulatory properties. The goal of this study was to analyze whether macrolides can exert immunomodulation of endothelial cells (ECs) in an experimental model of sepsis.

METHODS: Human ECs were stimulated by proinflammatory cytokines and lipopolysaccharide before exposure to macrolides. ECs phenotypes were analyzed by flow cytometry. Cocultures of ECs and peripheral blood mononuclear cells (PBMCs) were performed to study the ECs ability to alter T-cell viability and differentiation in the presence of macrolides. Soluble factor production was assessed.

RESULTS: ECs act as non-professional antigen presenting cells and expressed human leukocyte antigen (HLA) antigens, the adhesion molecules CD54, CD106, and the coinhibitory molecule CD274 after septic stimulation. Incubation with macrolides induced a significant decrease of HLA class I and HLA class II HLA-DR on septic-stimulated ECs, but did not alter either CD54, CD106, nor CD274 expression. Interleukin-6 (IL-6) and IL-8 production by stimulated ECs were unaltered by incubation with macrolides, whereas Clarithromycin exposure significantly decreased IL-6 gene expression. In cocultures of septic ECs with PBMCs, neither the proportion of CD4 

CONCLUSION: This study reports phenotypic and gene expression changes in septic-stimulated ECs exposed to macrolides, without resulting in altered immunogenicity of ECs in co-cultures with PBMCs. In vivo studies may help to further understand the impact of macrolide therapy on ECs immune homeostasis during sepsis.

© 2021 John Wiley & Sons Ltd.

Keywords: antibiotics; endothelium; immunoregulation; inflammation; septic shock

References

  1. J Interferon Cytokine Res. 2001 Apr;21(4):231-40 - PubMed
  2. JAMA. 2016 Feb 23;315(8):801-10 - PubMed
  3. Int J Environ Res Public Health. 2013 Aug 27;10(9):3834-42 - PubMed
  4. Transfusion. 2011 May;51(5):993-1001 - PubMed
  5. Chest. 2012 May;141(5):1153-1159 - PubMed
  6. J Allergy Clin Immunol. 2016 May;137(5):1617-1620.e6 - PubMed
  7. Microbes Infect. 2007 Jan;9(1):78-86 - PubMed
  8. Ann Intensive Care. 2015 Dec;5(1):16 - PubMed
  9. Eur Respir J. 1995 Sep;8(9):1451-7 - PubMed
  10. J Exp Med. 2009 Feb 16;206(2):299-311 - PubMed
  11. Circulation. 2013 Dec 3;128(23):2504-16 - PubMed
  12. Antimicrob Agents Chemother. 2006 May;50(5):1805-12 - PubMed
  13. Acta Otolaryngol Suppl. 1998;538:233-8 - PubMed
  14. Ann Transl Med. 2018 Jan;6(2):24 - PubMed
  15. Intensive Care Med. 2009 Apr;35(4):678-86 - PubMed
  16. J Immunol. 2001 Jun 1;166(11):6952-63 - PubMed
  17. Crit Care Med. 2004 Nov;32(11):2329-31 - PubMed
  18. Respiration. 1995;62(4):217-22 - PubMed
  19. Pulm Pharmacol Ther. 2016 Aug;39:14-20 - PubMed
  20. Kidney Int. 2001 Feb;59(2):488-97 - PubMed
  21. J Cardiovasc Pharmacol. 2007 Aug;50(2):126-41 - PubMed
  22. Antimicrob Agents Chemother. 2016 Sep 23;60(10):6146-54 - PubMed
  23. Adv Clin Exp Med. 2016 Sep-Oct;25(5):871-878 - PubMed
  24. Front Immunol. 2021 Jul 09;12:666531 - PubMed
  25. J Heart Lung Transplant. 2019 Mar;38(3):252-259 - PubMed
  26. Lancet Respir Med. 2020 Jun;8(6):619-630 - PubMed
  27. Crit Care Med. 2000 Nov;28(11):3672-8 - PubMed
  28. Bioorg Med Chem. 2020 Mar 1;28(5):115327 - PubMed
  29. Pharmacology. 2014;93(1-2):92-9 - PubMed
  30. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2891-6 - PubMed
  31. Respir Res. 2015 Feb 07;16:15 - PubMed
  32. J Antimicrob Chemother. 2014 Jun;69(6):1441-6 - PubMed
  33. J Immunol. 2007 Mar 1;178(5):3237-43 - PubMed
  34. Br J Pharmacol. 1993 Dec;110(4):1515-21 - PubMed
  35. Nat Rev Immunol. 2017 Jul;17(7):407-420 - PubMed
  36. Springerplus. 2016 Jul 28;5(1):1193 - PubMed
  37. Am J Respir Crit Care Med. 2019 Oct 1;200(7):e45-e67 - PubMed
  38. Shock. 2015 Feb;43(2):192-200 - PubMed
  39. Nat Immunol. 2004 Oct;5(10):987-95 - PubMed
  40. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a006429 - PubMed
  41. J Immunol. 2005 Apr 15;174(8):5110-8 - PubMed
  42. Nat Immunol. 2019 May;20(5):613-625 - PubMed
  43. J Antimicrob Chemother. 2000 Aug;46(2):235-40 - PubMed
  44. Antimicrob Agents Chemother. 1998 Jun;42(6):1499-502 - PubMed
  45. Immunity. 2009 May;30(5):646-55 - PubMed
  46. Front Immunol. 2017 Dec 22;8:1907 - PubMed
  47. Front Immunol. 2018 Mar 13;9:302 - PubMed
  48. Front Immunol. 2017 Dec 14;8:1761 - PubMed
  49. J Innate Immun. 2013;5(4):324-35 - PubMed
  50. PLoS One. 2014 Jun 11;9(2):e98819 - PubMed
  51. J Immunol. 2018 Mar 1;200(5):1543-1553 - PubMed
  52. Immunol Rev. 2016 Nov;274(1):307-329 - PubMed
  53. Respirology. 2012 May;17(4):727-34 - PubMed
  54. J Am Soc Nephrol. 2003 May;14(5):1336-48 - PubMed
  55. Intensive Care Med. 2019 Jul;45(7):1043-1045 - PubMed
  56. J Antimicrob Chemother. 2012 Mar;67(3):530-40 - PubMed
  57. Front Immunol. 2015 Dec 11;6:621 - PubMed
  58. Fluids Barriers CNS. 2013 Mar 26;10(1):16 - PubMed
  59. Hum Immunol. 2012 Dec;73(12):1269-74 - PubMed
  60. Immun Inflamm Dis. 2021 Dec;9(4):1656-1669 - PubMed
  61. Crit Care. 2017 Mar 9;21(1):48 - PubMed

Publication Types