Display options
Share it on

Animals (Basel). 2021 Aug 31;11(9). doi: 10.3390/ani11092570.

A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen.

Animals : an open access journal from MDPI

Heiko Henning, Anne-Marie Luther, Dagmar Waberski

Affiliations

  1. Unit for Reproductive Medicine, Clinic for Pigs and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany.
  2. Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany.

PMID: 34573536 PMCID: PMC8465936 DOI: 10.3390/ani11092570

Abstract

Retained cytoplasmic droplets (CD) are the most frequent sperm abnormality in boar semen. A high incidence of CD is associated with subfertility, but the underlaying reasons are not well understood. The storage of extended semen might augment the adverse effects of CD on essential steps towards fertilization, such as capacitation. The aim of this study was to examine whether the enhanced presence of CD in boar semen influences sperm's response to the capacitation stimulus bicarbonate during long-term semen storage. Extended semen samples (n = 78) from 13 artificial insemination centers were analyzed using a flow cytometric calcium influx assay. Samples with >15% of CD showed a reduced specific response to bicarbonate and a higher non-specific destabilization after storage for 96 h and subsequent incubation at 38 °C in three variants of Tyrode's medium (

Keywords: boar semen; calcium influx; capacitation; cytoplasmic droplets; semen preservation

References

  1. Dev Biol. 2000 Mar 15;219(2):334-49 - PubMed
  2. Andrology. 2017 Mar;5(2):204-218 - PubMed
  3. Cell Calcium. 2002 Nov-Dec;32(5-6):235-49 - PubMed
  4. J Reprod Fertil. 1972 Jul;30(1):105-15 - PubMed
  5. Anim Reprod Sci. 2013 Jul;140(1-2):70-6 - PubMed
  6. Theriogenology. 2007 Mar 1;67(4):704-18 - PubMed
  7. Reprod Domest Anim. 2004 Oct;39(5):303-8 - PubMed
  8. Theriogenology. 2005 Nov;64(8):1766-82 - PubMed
  9. Theriogenology. 2019 Oct 1;137:2-7 - PubMed
  10. Exp Cell Res. 1968 Oct;52(2):523-40 - PubMed
  11. Biol Reprod. 1970 Dec;3(3):327-37 - PubMed
  12. Andrology. 2013 May;1(3):376-86 - PubMed
  13. Biol Reprod. 2009 Sep;81(3):553-61 - PubMed
  14. Theriogenology. 2005 Jan 15;63(2):458-69 - PubMed
  15. J Reprod Dev. 2015;61(5):407-13 - PubMed
  16. Tissue Cell. 1984;16(3):455-68 - PubMed
  17. Open Biol. 2015 Aug;5(8): - PubMed
  18. Dev Biol. 2004 Apr 1;268(1):53-63 - PubMed
  19. Theriogenology. 2010 Apr 15;73(7):995-1000 - PubMed
  20. Andrology. 2015 Sep;3(5):834-42 - PubMed
  21. Mol Hum Reprod. 2001 Oct;7(10):923-33 - PubMed
  22. Reproduction. 2006 Feb;131(2):311-8 - PubMed
  23. Int J Biochem. 1990;22(5):519-24 - PubMed
  24. Mol Reprod Dev. 2017 Oct;84(10):1039-1052 - PubMed
  25. Cytometry A. 2012 Jul;81(7):576-87 - PubMed
  26. EMBO J. 2011 Jan 5;30(1):17-31 - PubMed
  27. Andrology. 2019 Sep;7(5):566-580 - PubMed
  28. Fertil Steril. 2004 Feb;81(2):349-54 - PubMed
  29. Theriogenology. 2000 Apr 15;53(7):1477-88 - PubMed
  30. Reprod Domest Anim. 2015 Jul;50 Suppl 2:1-4 - PubMed
  31. Asian J Androl. 2013 Nov;15(6):799-805 - PubMed
  32. J Cell Sci. 2001 Oct;114(Pt 19):3543-55 - PubMed

Publication Types