Display options
Share it on

Cell Discov. 2021 Nov 02;7(1):106. doi: 10.1038/s41421-021-00334-6.

Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2.

Cell discovery

Xudong Chen, Mingze Zhou, Sensen Zhang, Jian Yin, Ping Zhang, Xujun Xuan, Peiyi Wang, Zhiqiang Liu, Boda Zhou, Maojun Yang

Affiliations

  1. Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
  2. Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
  3. Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, Guangdong, China.
  4. Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China. [email protected].
  5. Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. [email protected].
  6. Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China. [email protected].
  7. Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China. [email protected].
  8. Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China. [email protected].

PMID: 34728622 PMCID: PMC8564547 DOI: 10.1038/s41421-021-00334-6

Abstract

Polyamines are important polycations that play critical roles in mammalian cells. ATP13A2 belongs to the orphan P5B adenosine triphosphatases (ATPase) family and has been established as a lysosomal polyamine exporter to maintain the normal function of lysosomes and mitochondria. Previous studies have reported that several human neurodegenerative disorders are related to mutations in the ATP13A2 gene. However, the transport mechanism of ATP13A2 in the lysosome remains unclear. Here, we report the cryo-electron microscopy (cryo-EM) structures of three distinct intermediates of the human ATP13A2, revealing key insights into the spermine (SPM) transport cycle in the lysosome. The transmembrane domain serves as a substrate binding site and the C-terminal domain is essential for protein stability and may play a regulatory role. These findings advance our understanding of the polyamine transport mechanism, the lipid-associated regulation, and the disease-associated mutants of ATP13A2.

© 2021. The Author(s).

References

  1. Adv Pharmacol. 1997;38:119-49 - PubMed
  2. BMC Bioinformatics. 2008 Jan 23;9:40 - PubMed
  3. Neurobiol Aging. 2012 Aug;33(8):1843.e1-7 - PubMed
  4. Nat Commun. 2021 Jun 25;12(1):3973 - PubMed
  5. Annu Rev Biophys. 2011;40:243-66 - PubMed
  6. Nat Commun. 2018 Apr 12;9(1):1416 - PubMed
  7. Neurology. 2007 May 8;68(19):1557-62 - PubMed
  8. Biochem J. 2013 Feb 15;450(1):47-53 - PubMed
  9. Brain. 2016 Jul;139(Pt 7):1904-18 - PubMed
  10. Front Mol Neurosci. 2014 May 27;7:48 - PubMed
  11. Acta Neurol Scand. 1994 May;89(5):347-52 - PubMed
  12. Parkinsons Dis. 2016;2016:9531917 - PubMed
  13. Sci Rep. 2019 Jan 24;9(1):753 - PubMed
  14. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  15. Mov Disord. 2009 Oct 30;24(14):2104-11 - PubMed
  16. J Struct Biol. 2016 Jan;193(1):1-12 - PubMed
  17. Nat Methods. 2017 Mar;14(3):290-296 - PubMed
  18. Hum Mol Genet. 2014 Jun 1;23(11):2816-33 - PubMed
  19. N Engl J Med. 2003 Apr 3;348(14):1356-64 - PubMed
  20. Biochem Biophys Res Commun. 2009 May 29;383(2):198-202 - PubMed
  21. Nat Med. 2004 Jul;10 Suppl:S58-62 - PubMed
  22. Biochem Soc Trans. 2019 Oct 31;47(5):1247-1257 - PubMed
  23. Bioinformatics. 2005 Aug 1;21(15):3327-8 - PubMed
  24. PLoS One. 2018 Mar 5;13(3):e0193228 - PubMed
  25. Mol Cell Biochem. 2004 Jul;262(1-2):127-33 - PubMed
  26. Science. 2020 Sep 25;369(6511): - PubMed
  27. Nat Genet. 2006 Oct;38(10):1184-91 - PubMed
  28. Science. 2019 Sep 13;365(6458):1149-1155 - PubMed
  29. Biochem Biophys Res Commun. 2004 Oct 22;323(3):731-8 - PubMed
  30. Mov Disord. 2005 Oct;20(10):1264-71 - PubMed
  31. Am J Hum Genet. 2002 Oct;71(4):777-90 - PubMed
  32. Nature. 2019 Jul;571(7765):366-370 - PubMed
  33. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  34. Genes (Basel). 2020 Nov 11;11(11): - PubMed
  35. Ann Neurol. 2006 Apr;59(4):700-8 - PubMed
  36. Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31198-31207 - PubMed
  37. Genomics. 2005 Aug;86(2):182-94 - PubMed
  38. J Biol Chem. 2016 Jul 15;291(29):14904-12 - PubMed
  39. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  40. J Biol Chem. 2021 Jan-Jun;296:100182 - PubMed
  41. Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 - PubMed
  42. FASEB J. 2010 Jan;24(1):206-17 - PubMed
  43. Cell Cycle. 2015;14(21):3341-2 - PubMed
  44. Cell Mol Neurobiol. 2010 Mar;30(2):233-46 - PubMed
  45. Mol Psychiatry. 2003 Oct;8(10):879-84 - PubMed
  46. Eur J Neurol. 2006 Jun;13(6):616-27 - PubMed
  47. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9040-5 - PubMed
  48. Nat Methods. 2017 Apr;14(4):331-332 - PubMed
  49. J Struct Biol. 2005 Apr;150(1):69-80 - PubMed
  50. Neuron. 2003 Sep 11;39(6):889-909 - PubMed
  51. Hum Mol Genet. 2014 Jun 1;23(11):2791-801 - PubMed
  52. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):846-55 - PubMed
  53. Hum Mol Genet. 2012 Jun 15;21(12):2646-50 - PubMed
  54. Biochim Biophys Acta. 2015 Aug;1848(8):1646-55 - PubMed
  55. Brain. 2017 Feb;140(2):287-305 - PubMed
  56. Nature. 2020 Feb;578(7795):419-424 - PubMed
  57. Hum Genomics. 2019 Apr 16;13(1):19 - PubMed
  58. Nat Genet. 2009 Mar;41(3):308-15 - PubMed
  59. Cell Mol Biol Lett. 2012 Mar;17(1):153-70 - PubMed
  60. Mol Phylogenet Evol. 2008 Feb;46(2):619-34 - PubMed
  61. J Struct Biol. 2012 Dec;180(3):519-30 - PubMed

Publication Types

Grant support