Display options
Share it on

Sci Rep. 2021 Nov 02;11(1):21425. doi: 10.1038/s41598-021-00954-8.

Co-delivery of doxorubicin and conferone by novel pH-responsive β-cyclodextrin grafted micelles triggers apoptosis of metastatic human breast cancer cells.

Scientific reports

Akram Rahmani, Fariborz Rahimi, Mehrdad Iranshahi, Houman Kahroba, Amir Zarebkohan, Mehdi Talebi, Roya Salehi, Hassan Zavvar Mousavi

Affiliations

  1. Department of Applied Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran.
  2. Department of Electrical Engineering, University of Bonab, Bonab, Iran.
  3. Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
  4. Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
  5. Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
  6. Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
  7. Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
  8. Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. [email protected].
  9. Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran. [email protected].

PMID: 34728703 PMCID: PMC8563731 DOI: 10.1038/s41598-021-00954-8

Abstract

Adjuvant-aided combination chemotherapy is one of the most effective ways of cancer treatment by overcoming the multidrug resistance (MDR) and reducing the side-effects of anticancer drugs. In this study, Conferone (Conf) was used as an adjuvant in combination with Doxorubicin (Dox) for inducing apoptosis to MDA-MB-231 cells. Herein, the novel biodegradable amphiphilic β-cyclodextrin grafted poly maleate-co-PLGA was synthesized by thiol-ene addition and ring-opening process. Micelles obtained from the novel copolymer showed exceptional properties such as small size of around 34.5 nm, CMC of 0.1 μg/mL, and cell internalization of around 100% at 30 min. These novel engineered micelles were used for combination delivery of doxorubicin-conferone with high encapsulation efficiency of near 100% for both drugs. Our results show that combination delivery of Dox and Conf to MDA-MB-231 cells had synergistic effects (CI < 1). According to cell cycle and Annexin-V apoptosis analysis, Dox-Conf loaded micelle significantly induce tumor cell apoptosis (more than 98% of cells population showed apoptosis at IC

© 2021. The Author(s).

References

  1. Regul Toxicol Pharmacol. 2018 Nov;99:200-212 - PubMed
  2. Eur J Pharm Biopharm. 2015 May;92:120-9 - PubMed
  3. Carbohydr Polym. 2021 Jan 1;251:116871 - PubMed
  4. Macromol Biosci. 2009 Nov 10;9(11):1090-7 - PubMed
  5. Biomed Pharmacother. 2019 Jan;109:1240-1248 - PubMed
  6. Nano Today. 2014 Apr 1;9(2):223-243 - PubMed
  7. Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111554 - PubMed
  8. J Drug Deliv. 2013;2013:340315 - PubMed
  9. Nanomaterials (Basel). 2017 Jul 06;7(7): - PubMed
  10. Biomaterials. 2014 Jan;35(1):550-66 - PubMed
  11. Biomed Res Int. 2015;2015:198268 - PubMed
  12. Biomaterials. 2010 May;31(13):3657-66 - PubMed
  13. Polymers (Basel). 2018 Oct 12;10(10): - PubMed
  14. J Adv Pharm Technol Res. 2011 Apr;2(2):81-7 - PubMed
  15. J Drug Deliv Sci Technol. 2020 Dec;60: - PubMed
  16. Colloids Surf B Biointerfaces. 2016 Aug 1;144:203-213 - PubMed
  17. Colloids Surf B Biointerfaces. 2020 Oct;194:111225 - PubMed
  18. Spectrochim Acta A Mol Biomol Spectrosc. 2011 May;78(5):1403-7 - PubMed
  19. Pharmaceutics. 2018 May 18;10(2): - PubMed
  20. J Pharm Sci. 2011 Jun;100(6):2430-42 - PubMed
  21. Int J Mol Cell Med. 2015 Spring;4(2):94-102 - PubMed
  22. Biomed Pharmacother. 2020 Jan;121:109594 - PubMed
  23. Sci Rep. 2017 Feb 15;7:42632 - PubMed
  24. Trends Mol Med. 2006 Sep;12(9):440-50 - PubMed
  25. Life Sci. 2013 Nov 13;93(21):783-90 - PubMed
  26. Carbohydr Polym. 2019 Feb 15;206:694-705 - PubMed
  27. Biomaterials. 2014 Feb;35(7):2322-35 - PubMed
  28. J Agric Food Chem. 2017 Aug 9;65(31):6467-6476 - PubMed
  29. Pharm Biol. 2010 Feb;48(2):217-20 - PubMed
  30. Acta Biomater. 2011 Feb;7(2):585-92 - PubMed
  31. Front Bioeng Biotechnol. 2018 Aug 13;6:110 - PubMed
  32. Bioimpacts. 2017;7(1):49-57 - PubMed
  33. Carbohydr Polym. 2020 Oct 15;246:116658 - PubMed
  34. Drug Dev Ind Pharm. 2019 Jun;45(6):1017-1028 - PubMed
  35. Biomaterials. 2012 Mar;33(8):2521-31 - PubMed
  36. Biomed Pharmacother. 2020 Jan;121:109139 - PubMed
  37. Int J Cancer. 1999 Jun 21;84(3):315-20 - PubMed
  38. J Tradit Complement Med. 2014 Apr;4(2):118-25 - PubMed
  39. Int J Nanomedicine. 2015 Apr 23;10:3147-62 - PubMed
  40. Fitoterapia. 2015 Jun;103:149-54 - PubMed
  41. Int J Nanomedicine. 2017 Oct 05;12:7291-7309 - PubMed
  42. Pharmacol Res. 2019 Aug;146:104313 - PubMed
  43. Macromol Biosci. 2011 Feb 11;11(2):296-307 - PubMed
  44. Phytomedicine. 2016 Apr 15;23(4):398-405 - PubMed
  45. Nanomedicine (Lond). 2010 Feb;5(2):193-208 - PubMed
  46. Molecules. 2019 Jun 29;24(13): - PubMed
  47. Sci Rep. 2019 Oct 11;9(1):14686 - PubMed
  48. Semin Oncol. 2019 Feb;46(1):83-99 - PubMed
  49. Sci Rep. 2017 Apr 24;7:46540 - PubMed
  50. Acta Biomater. 2020 Sep 1;113:554-569 - PubMed
  51. Colloids Surf B Biointerfaces. 2014 Nov 1;123:486-92 - PubMed
  52. Chem Commun (Camb). 2015 Nov 11;51(87):15768-71 - PubMed
  53. Artif Cells Nanomed Biotechnol. 2017 May;45(3):432-440 - PubMed

Publication Types