Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2102849118.

Differential effects of PD-1 and CTLA-4 blockade on the melanoma-reactive CD8 T cell response.

Proceedings of the National Academy of Sciences of the United States of America

Anastasia Gangaev, Elisa A Rozeman, Maartje W Rohaan, Olga I Isaeva, Daisy Philips, Sanne Patiwael, Joost H van den Berg, Antoni Ribas, Dirk Schadendorf, Bastian Schilling, Ton N Schumacher, Christian U Blank, John B A G Haanen, Pia Kvistborg

Affiliations

  1. Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
  2. Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
  3. Department of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
  4. Oncode Institute, Utrecht, 3521 AL, The Netherlands.
  5. University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095.
  6. Department of Dermatology, University Hospital Duisburg-Essen, Essen D-45147, Germany.
  7. Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg 97080, Germany.
  8. Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands; [email protected].

PMID: 34670835 DOI: 10.1073/pnas.2102849118

Abstract

Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have revolutionized the treatment of melanoma patients. Based on early studies addressing the mechanism of action, it was assumed that PD-1 blockade mostly influences T cell responses at the tumor site. However, recent work has demonstrated that PD-1 blockade can influence the T cell compartment in peripheral blood. If the activation of circulating, tumor-reactive T cells would form an important mechanism of action of PD-1 blockade, it may be predicted that such blockade would alter either the frequency and/or the breadth of the tumor-reactive CD8 T cell response. To address this question, we analyzed CD8 T cell responses toward 71 melanoma-associated epitopes in peripheral blood of 24 melanoma patients. We show that both the frequency and the breadth of the circulating melanoma-reactive CD8 T cell response was unaltered upon PD-1 blockade. In contrast, a broadening of the circulating melanoma-reactive CD8 T cell response was observed upon CTLA-4 blockade, in concordance with our prior data. Based on these results, we conclude that PD-1 and CTLA-4 blockade have distinct mechanisms of action. In addition, the data provide an argument in favor of the hypothesis that anti-PD-1 therapy may primarily act at the tumor site.

Keywords: CTLA-4; PD-1; melanoma-reactive CD8 T cells

Conflict of interest statement

The authors declare no competing interest.

References

  1. Robert C., et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med.. 2015;372:320–330. - PubMed
  2. Borghaei H., et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med.. 2015;373:1627–1639. - PubMed
  3. Motzer R. J., et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med.. 2015;373:1803–1813. - PubMed
  4. Powles T., et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391:748–757. - PubMed
  5. Tumeh P. C., et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. - PubMed
  6. Larkin J., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med.. 2015;373:23–34. - PubMed
  7. Topalian S. L., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.. 2012;366:2443–2454. - PubMed
  8. Noguchi T., et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol. Res.. 2017;5:106–117. - PubMed
  9. Kleinovink J. W., et al. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. OncoImmunology. 2017;6:e1294299. - PubMed
  10. Im S. J., et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016;537:417–421. - PubMed
  11. He R., et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412–428. - PubMed
  12. Kamphorst A. O., et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355:1423–1427. - PubMed
  13. Hui E., et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428–1433. - PubMed
  14. Kamphorst A. O., et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl. Acad. Sci. U.S.A.. 2017;114:4993–4998. - PubMed
  15. Huang A. C., et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60–65. - PubMed
  16. Huang A. C., et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med.. 2019;25:454–461. - PubMed
  17. Wei S. C., et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl. Acad. Sci. U.S.A.. 2019;116:22699–22709. - PubMed
  18. Yost K. E., et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med.. 2019;25:1251–1259. - PubMed
  19. Robert L., et al. Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes. OncoImmunology. 2014;3:e29244. - PubMed
  20. Gubin M. M., et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–581. - PubMed
  21. Kvistborg P., et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med.. 2014;6:254ra128. - PubMed
  22. Kvistborg P., et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. OncoImmunology. 2012;1:409–418. - PubMed
  23. Miller B. C., et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol.. 2019;20:326–336. - PubMed
  24. Siddiqui I., et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50:195–211.e10. - PubMed
  25. Ribas A., Wolchok J. D.. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. - PubMed
  26. Weber J. S., et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): An open-label, randomised, phase 2 trial. Lancet Oncol.. 2016;17:943–955. - PubMed
  27. Verma V., et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol.. 2019;20:1231–1243. - PubMed
  28. Martínez-Usatorre A., Donda A., Zehn D., Romero P.. PD-1 blockade unleashes effector potential of both high- and low-affinity tumor-infiltrating T cells. J. Immunol.. 2018;201:792–803. - PubMed
  29. Rizvi N. A., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. - PubMed
  30. Hodi F. S. H., et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol.. 2018;19:1480–1492. - PubMed
  31. Rodenko B., et al. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc.. 2006;1:1120–1132. - PubMed
  32. Eisenhauer E. A., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009;45:228–247. - PubMed
  33. Toebes M., et al. Design and use of conditional MHC class I ligands. Nat. Med.. 2006;12:246–251. - PubMed
  34. Andersen R. S., et al. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat. Protoc.. 2012;7:891–902. - PubMed
  35. Hadrup S. R., et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods. 2009;6:520–526. - PubMed
  36. Van Rossum G., Drake F. L.. Python 3 Reference Manual. 2009. - PubMed
  37. Harris C. R., et al. Array programming with NumPy. Nature. 2020;585:357–362. - PubMed
  38. Virtanen P., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. - PubMed
  39. Shugay M., et al. VDJtools: Unifying post-analysis of T cell receptor repertoires. PLOS Comput. Biol.. 2015;11:e1004503. - PubMed
  40. Shugay M., et al. VDJdb: A curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res.. 2018;46:D419–D427. - PubMed
  41. Gangaev A., et al. 2021. - PubMed
  42. Gangaev A., et al. 2021. - PubMed

Publication Types