Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Nov 09;118(45). doi: 10.1073/pnas.2109175118.

Peptide nucleic acid-dependent artifact can lead to false-positive triplex gene editing signals.

Proceedings of the National Academy of Sciences of the United States of America

Pui Yan Ho, Zhen Zhang, Mark E Hayes, Andrew Curd, Carla Dib, Maire Rayburn, Sze Nok Tam, Tumul Srivastava, Brandon Hriniak, Xiao-Jun Li, Scott Leonard, Lan Wang, Somayeh Tarighat, Derek S Sim, Mark Fiandaca, James M Coull, Allen Ebens, Marshall Fordyce, Agnieszka Czechowicz

Affiliations

  1. Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305.
  2. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305.
  3. Vera Therapeutics, Inc., South San Francisco, CA 94080.
  4. Vera Therapeutics, Inc., South San Francisco, CA 94080 [email protected] [email protected].
  5. Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; [email protected] [email protected].

PMID: 34732575 PMCID: PMC8609320 DOI: 10.1073/pnas.2109175118

Abstract

Triplex gene editing relies on binding a stable peptide nucleic acid (PNA) sequence to a chromosomal target, which alters the helical structure of DNA to stimulate site-specific recombination with a single-strand DNA (ssDNA) donor template and elicits gene correction. Here, we assessed whether the codelivery of PNA and donor template encapsulated in Poly Lactic-co-Glycolic Acid (PLGA)-based nanoparticles can correct sickle cell disease and x-linked severe combined immunodeficiency. However, through this process we have identified a false-positive PCR artifact due to the intrinsic capability of PNAs to aggregate with ssDNA donor templates. Here, we show that the combination of PNA and donor templates but not either agent alone results in different degrees of aggregation that result in varying but highly reproducible levels of false-positive signal. We have identified this phenomenon in vitro and confirmed that the PNA sequences producing the highest supposed correction in vitro are not active in vivo in both disease models, which highlights the importance of interrogating and eliminating carryover of ssDNA donor templates in assessing various gene editing technologies such as PNA-mediated gene editing.

Keywords: DNA repair; gene editing; hematopoietic stem cell; peptide nucleic acid

References

  1. Chem Biol. 2011 Sep 23;18(9):1189-98 - PubMed
  2. Mol Carcinog. 2009 Apr;48(4):389-99 - PubMed
  3. Nat Commun. 2018 Jun 26;9(1):2481 - PubMed
  4. Nat Commun. 2019 May 17;10(1):2212 - PubMed
  5. Molecules. 2018 Mar 11;23(3): - PubMed
  6. Nat Biotechnol. 2019 Oct;37(10):1102-1103 - PubMed
  7. Methods Mol Biol. 2020;2105:261-281 - PubMed
  8. Gene Ther. 2013 Jun;20(6):658-69 - PubMed
  9. Nat Commun. 2015 Apr 27;6:6952 - PubMed
  10. Curr Gene Ther. 2014;14(5):331-42 - PubMed
  11. Yale J Biol Med. 2017 Dec 19;90(4):583-598 - PubMed
  12. Blood. 2015 Apr 23;125(17):2597-604 - PubMed
  13. Haematologica. 2011 Jan;96(1):13-5 - PubMed
  14. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16695-700 - PubMed
  15. Mol Ther. 2011 Jan;19(1):172-80 - PubMed
  16. Nat Biotechnol. 2020 Apr;38(4):382 - PubMed
  17. Biosci Rep. 2020 Apr 30;40(4): - PubMed
  18. Biol Blood Marrow Transplant. 2001;7(12):665-73 - PubMed
  19. Nat Commun. 2016 Oct 26;7:13304 - PubMed
  20. Sci Transl Med. 2017 Oct 11;9(411): - PubMed

Publication Types

Grant support