Display options
Share it on

Cell Death Dis. 2021 Oct 26;12(11):1003. doi: 10.1038/s41419-021-04282-7.

Cardiac-specific CGI-58 deficiency activates the ER stress pathway to promote heart failure in mice.

Cell death & disease

Xin Xie, Yi-Fan Tie, Song Lai, Yun-Long Zhang, Hui-Hua Li, Ying Liu

Affiliations

  1. Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
  2. Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China.
  3. Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China. [email protected].
  4. Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, China. [email protected].
  5. Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China. [email protected].

PMID: 34702801 PMCID: PMC8548506 DOI: 10.1038/s41419-021-04282-7

Abstract

Excess myocardial triacylglycerol accumulation (i.e., cardiac steatosis) impairs heart function, suggesting that enzymes promoting triacylglycerol metabolism exert essential regulatory effects on heart function. Comparative gene identification 58 (CGI-58) is a key enzyme that promotes the hydrolysis of triglycerides by activating adipose triglyceride lipase and plays a protective role in maintaining heart function. In this study, the effects of CGI-58 on heart function and the underlying mechanism were investigated using cardiac-specific CGI58-knockout mice (CGI-58

© 2021. The Author(s).

References

  1. Biochim Biophys Acta. 2010 Mar;1801(3):311-9 - PubMed
  2. Endocrinology. 2015 May;156(5):1648-58 - PubMed
  3. Biochem Biophys Res Commun. 2013 Aug 16;438(1):224-9 - PubMed
  4. OMICS. 2012 May;16(5):284-7 - PubMed
  5. Br J Pharmacol. 2018 Apr;175(8):1293-1304 - PubMed
  6. Curr Hypertens Rep. 2012 Dec;14(6):517-31 - PubMed
  7. Dev Cell. 2015 Mar 23;32(6):678-92 - PubMed
  8. Biochim Biophys Acta. 2014 Dec;1841(12):1648-55 - PubMed
  9. Biochim Biophys Acta. 2016 Nov;1862(11):2023-2033 - PubMed
  10. Nat Med. 2011 Aug 21;17(9):1076-85 - PubMed
  11. Front Cell Dev Biol. 2021 Jan 26;9:629932 - PubMed
  12. J Neurosci Methods. 2001 Jan 15;104(2):165-76 - PubMed
  13. Biochim Biophys Acta. 2013 Dec;1833(12):3460-3470 - PubMed
  14. J Physiol. 2004 Feb 15;555(Pt 1):1-13 - PubMed
  15. Br J Pharmacol. 2012 Jan;165(2):380-9 - PubMed
  16. Circ Heart Fail. 2012 Jan;5(1):106-15 - PubMed
  17. Nat Metab. 2019 Nov;1(11):1157-1167 - PubMed
  18. J Lipid Res. 2009 Nov;50(11):2314-23 - PubMed
  19. Eur Heart J. 2019 Mar 21;40(12):997-1008 - PubMed
  20. J Biol Chem. 2013 Apr 5;288(14):9892-9904 - PubMed
  21. Circ Res. 2005 Feb 4;96(2):225-33 - PubMed
  22. Mol Cell Biol. 2012 Feb;32(4):740-50 - PubMed
  23. Am J Pathol. 1975 Jun;79(3):387-434 - PubMed
  24. Sci Adv. 2019 May 08;5(5):eaau0495 - PubMed
  25. Circ Res. 2013 Aug 30;113(6):709-24 - PubMed
  26. Cell Cycle. 2010 Jul 15;9(14):2719-25 - PubMed
  27. Nature. 2016 Jan 21;529(7586):326-35 - PubMed
  28. Int J Inflam. 2011;2011:259462 - PubMed
  29. Mol Cell Biochem. 1992 Oct 21;116(1-2):103-9 - PubMed
  30. FASEB J. 2004 Nov;18(14):1692-700 - PubMed
  31. Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E289-96 - PubMed
  32. Bioinformatics. 2012 Jul 1;28(13):1805-6 - PubMed
  33. Prog Lipid Res. 2013 Jan;52(1):165-74 - PubMed

Publication Types

Grant support