Display options
Share it on

Sci Rep. 2021 Oct 21;11(1):20788. doi: 10.1038/s41598-021-99963-w.

Superconducting imprint of magnetic textures in ferromagnets with perpendicular magnetic anisotropy.

Scientific reports

A Sander, G Orfila, D Sanchez-Manzano, N Reyren, M A Mawass, F Gallego, S Collin, K Bouzehouane, K Höflich, F Kronast, F Grilli, A Rivera-Calzada, J Santamaria, J E Villegas, S Valencia

Affiliations

  1. Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
  2. GFMC. Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, 28040, Madrid, Spain.
  3. Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
  4. Ferdinand-Braun-Institut GMbH Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany.
  5. Karlsruher Institut für Technologie, Institut für Technische Physik, 76344, Eggenstein-Leopoldshafen, Germany.
  6. Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany. [email protected].

PMID: 34675339 PMCID: PMC8531309 DOI: 10.1038/s41598-021-99963-w

Abstract

Research on proximity effects in superconductor/ferromagnetic hybrids has most often focused on how superconducting properties are affected-and can be controlled-by the effects of the ferromagnet's exchange or magnetic fringe fields. The opposite, namely the possibility to craft, tailor and stabilize the magnetic texture in a ferromagnet by exploiting superconducting effects, has been more seldom explored. Here we show that the magnetic flux trapped in high-temperature superconducting YBa

© 2021. The Author(s).

References

  1. Rev Sci Instrum. 2018 Feb;89(2):023705 - PubMed
  2. Science. 2015 Jul 17;349(6245):283-6 - PubMed
  3. Nano Lett. 2015 Nov 11;15(11):7526-31 - PubMed
  4. Phys Rev B Condens Matter. 1995 Oct 1;52(14):10441-10446 - PubMed
  5. Phys Rev Lett. 2013 Apr 26;110(17):177205 - PubMed
  6. Adv Sci (Weinh). 2016 Sep 14;3(11):1600207 - PubMed
  7. Phys Rev B Condens Matter. 1995 Dec 1;52(21):15442-15457 - PubMed
  8. Phys Rev B Condens Matter. 1996 Apr 1;53(13):8643-8650 - PubMed
  9. Phys Rev Lett. 1987 Feb 16;58(7):737-740 - PubMed
  10. Nanoscale. 2016 May 21;8(19):10188-97 - PubMed
  11. Nanoscale. 2018 Oct 18;10(40):18995-19003 - PubMed
  12. Sci Rep. 2016 Jun 06;6:27159 - PubMed
  13. Sci Adv. 2018 Jul 13;4(7):eaat1061 - PubMed
  14. Phys Rev Lett. 1995 Jul 3;75(1):152-155 - PubMed
  15. Phys Rev Lett. 2004 Jul 30;93(5):057002 - PubMed
  16. Phys Rev B Condens Matter. 1995 Oct 1;52(14):10375-10389 - PubMed
  17. Phys Rev B Condens Matter. 1996 Aug 1;54(5):3514-3524 - PubMed
  18. Phys Rev Lett. 2012 Nov 21;109(21):217201 - PubMed
  19. Nat Nanotechnol. 2013 Dec;8(12):899-911 - PubMed
  20. Phys Rev B Condens Matter. 1995 Dec 1;52(22):16130-16139 - PubMed

Publication Types

Grant support