Display options
Share it on

Front Physiol. 2021 Oct 05;12:730933. doi: 10.3389/fphys.2021.730933. eCollection 2021.

Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and Its Implications for Computational Modeling of Electrical Conduction.

Frontiers in physiology

Aparna C Sankarankutty, Joachim Greiner, Jean Bragard, Joseph R Visker, Thirupura S Shankar, Christos P Kyriakopoulos, Stavros G Drakos, Frank B Sachse

Affiliations

  1. Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.
  2. Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
  3. Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg?Bad Krozingen, Freiburg, Germany.
  4. Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  5. Department of Physics and Applied Mathematics, School of Sciences, University of Navarra, Pamplona, Spain.
  6. Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States.

PMID: 34675817 PMCID: PMC8523803 DOI: 10.3389/fphys.2021.730933

Abstract

With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous burden on healthcare systems. Sudden death from arrhythmia is the major cause of mortality in HF patients. Computational modeling of the failing heart provides insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical treatment. However, the lack of a clinically informed approach to model cardiac tissues in HF hinders progress in developing patient-specific strategies. Here, we provide a microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D images of left ventricular tissues from HF patients (

Copyright © 2021 Sankarankutty, Greiner, Bragard, Visker, Shankar, Kyriakopoulos, Drakos and Sachse.

Keywords: cardiac fibrosis; cardiac modeling; conduction velocity; electrical conduction; heart failure

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Physiol Rev. 1999 Jan;79(1):215-62 - PubMed
  2. Comput Biol Med. 2015 Oct 1;65:177-83 - PubMed
  3. Ann Biomed Eng. 2016 May;44(5):1436-1448 - PubMed
  4. J Am Heart Assoc. 2015 Dec 18;4(12): - PubMed
  5. J Am Coll Cardiol. 2010 Jul 6;56(2):89-97 - PubMed
  6. Curr Opin Biomed Eng. 2018 Mar;5:21-28 - PubMed
  7. Circulation. 1992 Aug;86(2):426-30 - PubMed
  8. Circulation. 1993 Sep;88(3):915-26 - PubMed
  9. IEEE Trans Biomed Eng. 2013 Aug;60(8):2339-49 - PubMed
  10. Biophys J. 2008 Oct;95(8):3724-37 - PubMed
  11. Circ Arrhythm Electrophysiol. 2013 Dec;6(6):1208-14 - PubMed
  12. Circ Arrhythm Electrophysiol. 2018 Jul;11(7):e006273 - PubMed
  13. JACC Cardiovasc Imaging. 2019 Nov;12(11 Pt 2):2357-2368 - PubMed
  14. J Am Coll Cardiol. 2018 Apr 17;71(15):1696-1706 - PubMed
  15. Europace. 2007 Nov;9 Suppl 6:vi38-45 - PubMed
  16. Med Biol Eng Comput. 2020 Dec;58(12):2919-2935 - PubMed
  17. Circ Res. 2004 Oct 15;95(8):754-63 - PubMed
  18. Br Heart J. 1972 Jan;34(1):100-12 - PubMed
  19. Circulation. 1970 Jun;41(6):899-912 - PubMed
  20. IEEE Trans Biomed Eng. 2014 Mar;61(3):900-10 - PubMed
  21. PLoS One. 2018 Nov 28;13(11):e0208029 - PubMed
  22. Pacing Clin Electrophysiol. 1997 Feb;20(2 Pt 2):397-413 - PubMed
  23. Cardiovasc Res. 1990 Sep;24(9):741-7 - PubMed
  24. Eur Heart J. 2004 Sep;25(18):1614-9 - PubMed
  25. Adv Drug Deliv Rev. 2019 Jun;146:77-82 - PubMed
  26. J Am Coll Cardiol. 1996 Apr;27(5):1071-8 - PubMed
  27. Front Physiol. 2018 Dec 19;9:1832 - PubMed
  28. J Clin Invest. 1993 Jul;92(1):122-40 - PubMed
  29. Eur J Prev Cardiol. 2021 Feb 12;: - PubMed
  30. Circulation. 2012 Apr 17;125(15):1835-47 - PubMed
  31. J Am Coll Cardiol. 2005 Sep 20;46(6):1067-75 - PubMed
  32. Eur Heart J. 2018 Aug 14;39(31):2867-2875 - PubMed
  33. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  34. Philos Trans A Math Phys Eng Sci. 2011 Nov 13;369(1954):4331-51 - PubMed
  35. Front Physiol. 2018 Apr 04;9:239 - PubMed
  36. J Mol Cell Cardiol. 2000 Apr;32(4):621-30 - PubMed
  37. IEEE Trans Biomed Eng. 1997 Apr;44(4):326-8 - PubMed
  38. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  39. Biophys J. 1989 May;55(5):987-99 - PubMed
  40. Sci Rep. 2020 Jan 21;10(1):764 - PubMed
  41. J Am Coll Cardiol. 1998 Jul;32(1):187-96 - PubMed
  42. Circ J. 2011;75(11):2605-13 - PubMed
  43. Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):144-68 - PubMed
  44. Cardiovasc Res. 1997 Feb;33(2):258-71 - PubMed
  45. Heart Rhythm. 2007 Feb;4(2):175-85 - PubMed
  46. Europace. 2021 Mar 4;23(23 Suppl 1):i38-i47 - PubMed
  47. Circ Res. 1981 Jan;48(1):39-54 - PubMed
  48. Nat Biomed Eng. 2019 Nov;3(11):870-879 - PubMed
  49. PLoS One. 2012;7(10):e45040 - PubMed
  50. Front Physiol. 2018 Aug 07;9:1052 - PubMed
  51. J Am Coll Cardiol. 2010 Jul 27;56(5):382-91 - PubMed
  52. Am J Cardiol. 1982 Jun;49(8):1938-45 - PubMed
  53. Nat Biomed Eng. 2018 Oct;2(10):732-740 - PubMed
  54. Circulation. 2001 Dec 18;104(25):3069-75 - PubMed
  55. IEEE Trans Biomed Eng. 2020 Nov;67(11):3125-3133 - PubMed
  56. J Mol Cell Cardiol. 2014 May;70:83-91 - PubMed
  57. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H875-80 - PubMed

Publication Types

Grant support