Display options
Share it on

Xenotransplantation. 2021 Oct 13; doi: 10.1111/xen.12715. Epub 2021 Oct 13.

Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons.

Xenotransplantation

Jeremy B Foote, Abhijit Jagdale, Takayuki Yamamoto, Hidetaka Hara, Mohamed H Bikhet, Henk-Jan Schuurman, Huy Q Nguyen, Mohamed Ezzelarab, David Ayares, Douglas J Anderson, Huma Fatima, Devin E Eckhoff, David K C Cooper, Hayato Iwase

Affiliations

  1. Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  2. Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  3. Schubiomed Consultancy, Utrecht, The Netherlands.
  4. Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
  5. Revivicor, Blacksburg, Virginia, USA.
  6. Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  7. Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.

PMID: 34644438 DOI: 10.1111/xen.12715

Abstract

INTRODUCTION: Pigs deficient in three glycosyltransferase enzymes (triple-knockout [TKO] pigs, that is, not expressing the three known carbohydrate xenoantigens) and expressing 'protective' human transgenes are considered a likely source of organs for transplantation into human recipients. Some human sera have no or minimal natural antibody binding to red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) from TKO pigs. However, all Old World monkeys exhibit natural antibody binding to TKO pig cells. The xenoantigen targets of Old World monkey natural antibodies are postulated to be carbohydrate moieties exposed when the expression of the carbohydrate N-glycolylneuraminic acid (Neu5Gc) is deleted. The aim of this study was to compare the survival in baboons and histopathology of renal grafts from pigs that either (a) expressed Neu5Gc (GTKO pigs; Group 1) or (b) did not express Neu5Gc (GTKO/CMAHKO [DKO] or TKO pigs; Group 2).

METHODS: Life-supporting renal transplants were carried out using GTKO (n = 5) or DKO/TKO (n = 5) pig kidneys under an anti-CD40mAb-based immunosuppressive regimen.

RESULTS: Group 1 baboons survived longer than Group 2 baboons (median 237 vs. 35 days; mean 196 vs. 57 days; p < 0.07) and exhibited histopathological features of antibody-mediated rejection in only two kidneys. Group 2 exhibited histopathological features of antibody-mediated rejection in all five grafts, with IgM and IgG binding to renal interstitial arteries and peritubular capillaries. Rejection-free survival was significantly longer in Group 1 (p < 0.05).

CONCLUSIONS: The absence of expression of Neu5Gc on pig kidney grafts is associated with increased binding of baboon antibodies to pig endothelium and reduced graft survival.

© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Keywords: N-glycolylneuraminic acid; Neu5Gc; baboon; genetically-engineered; histopathology; kidney; pig; xenotransplantation

References

  1. Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 2015;22:194-202. - PubMed
  2. Yamamoto T, Hara H, Iwase H, et al. The final obstacle to successful preclinical xenotransplantation. Xenotransplantation. 2020;27:e12596. - PubMed
  3. Cooper DKC, Ezzelarab M, Iwase H, Hara H. Perspectives on the optimal genetically-engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation. 2018;102(12):1974-1982. - PubMed
  4. Cooper DKC, Hara H, Iwase H, et al. Justification of specific genetic modifications in pigs for clinical kidney or heart xenotransplantation. Xenotransplantation. 2019;26(4):e12516. - PubMed
  5. Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3- galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med. 2005;11(1):32-34. - PubMed
  6. Iwase H, Liu H, Wijkstrom M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation. 2015;22:302-309. - PubMed
  7. Iwase H, Hara H, Ezzelarab M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation. 2017;24(2). https://doi.org/10.1111/xen.12293. - PubMed
  8. Yamamoto T, Hara H, Foote J, et al. Life-supporting kidney xenotransplantation from genetically-engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation. 2019;103(10):2090-2104. - PubMed
  9. Mohiuddin MM, Singh AK, Corcoran PC, et al. Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation. 2014;21(1):35-45. - PubMed
  10. Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018;564:430-433. - PubMed
  11. Yamamoto T, Iwase H, Patel D, et al. Old world monkeys are less than ideal transplantation models for testing organs lacking three carbohydrate antigens (triple-knockout). Sci Rep. 2020;10:9771. - PubMed
  12. Cui Y, Yamamoto T, Raza SS, et al. Evidence for GTKO/β4GalNT2KO pigs as the preferred organ-source for Old World nonhuman primates as a preclinical model of xenotransplantation. Transplant Direct. 2020;6(8):e590. - PubMed
  13. Zhang J, Xie C, Lu Y, et al. Potential antigens involved in delayed xeongraft rejection in a GGTA1/CMAH DKO pig-to-monkey model. Sci Rep. 2017;7:10024. - PubMed
  14. Iwase H, Ekser B, Satyananda V, et al. Pig-to-baboon heterotopic heart transplantation-exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation. 2015;22(3):211-220. - PubMed
  15. Mueller NJ, Kuwaki K, Dor FJ, et al. Reduction of consumptive coagulopathy using porcine cytomegalovirus-free cardiac porcine grafts in pig-to-primate xenotransplantation. Transplantation. 2004;78(10):1449-1453. - PubMed
  16. Zhou H, Iwase H, Wolf RF, et al. Are there advantages in the use of specific pathogen-free baboons in pig organ xenotransplantation models?. Xenotransplantation. 2014;21(3):287-290. - PubMed
  17. Ezzelarab M, Garcia B, Azimzadeh A, et al. The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients. Transplantation. 2009;87(6):805-812. - PubMed
  18. Lin CC, Ezzelarab M, Shapiro R, et al. Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant. 2010;10(7):1556-1568. - PubMed
  19. Iwase H, Ekser B, Satyananda V, et al. Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transpl Immunol. 2015;32(2):99-108. - PubMed
  20. Gao B, Long C, Lee W, et al. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS One. 2017;12(7):e0180768. - PubMed
  21. Schuurman HJ, Cheng J, Lam T. Pathology of xenograft rejection: a commentary (review article). Xenotransplantation. 2003;10:293-299. - PubMed
  22. Rose AG, Cooper DKC. A histopathologic grading system of hyperacute (humoral, antibody-mediated) cardiac xenograft and allograft rejection. J Heart Lung Transplant. 1996;15:804-817. - PubMed
  23. Roufosse C, Simmonds N, Clahsen-van Groningen M, et al. A 2018 reference guide to the Banff classification of renal allograft pathology. Transplantation. 2018;102(11):1795-1814. - PubMed
  24. Shimizu A, Yamada K, Sachs DH, et al. Persistent rejection of peritubular capillaries and tubules is associated with progressive interstitial fibrosis. Kidney Int. 2002;61(5):1867-1879. - PubMed
  25. Shimizu A, Meehan SM, Kozlowski T, et al. Acute humoral xenograft rejection: destruction of the microvascular capillary endothelium in pig-to-nonhuman primate renal grafts. Lab Invest. 2000;80(6):815-830. - PubMed
  26. Shimizu A, Yamada K, Sachs DH, et al. Mechanisms of chronic renal allograft rejection. II. Progressive allograft glomerulopathy in miniature swine. Lab Invest. 2002;82(6):673-686. - PubMed
  27. Shimizu A, Yamada K, Yamamoto S, et al. Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts. J Am Soc Nephrol. 2005;16(9):2732-2745. - PubMed
  28. Shimizu A, Yamada K. Histopathology of xenografts in pig to non-human primate discordant xenotransplantation. Clin Transplant. 2010;24(22):11-15. - PubMed
  29. Shimizu A, Yamada K, Robson SC, et al. Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol. 2012;23:225-235. - PubMed
  30. Campanile N, Rood PPM, Yeh P, Casu A, Bottino R, Cooper DKC. Acute gastric dilatation after porcine islet transplantation in a cynomolgus monkey - case history and review of the literature. Xenotransplantation. 2007;14(3):265-270. - PubMed
  31. Liu H, Iwase H, Wijkstrom M, et al. Myroides infection in a baboon after prolonged pig kidney graft survival. Transplantation Direct. 2015;1(4):e15. - PubMed
  32. Knosalla C, Gollackner B, Bühler L, et al. Correlation of biochemical and hematological changes with graft failure following pig heart and kidney transplantation in baboons. Am J Transplant. 2003;3(12):1510-1519. - PubMed
  33. Kumar S, Ameli-Renani S, Hakin A, et al. Urethral obstruction following renal transplantation: causes, diagnosis, and management. Br J Radiol. 2014;87(1044):20140169. - PubMed
  34. Iwase H, Klein E, Cooper DKC. Physiological aspects of pig kidney transplantation in primates. Comp Med. 2018;68(5):332-340. - PubMed
  35. Iwase H, Yamamoto T, Cooper DKC. Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: a new syndrome of clinical importance? Xenotransplantation. 2019;26(2):e12472. - PubMed
  36. Ezzelarab MB, Cooper DKC. Systemic inflammation in xenograft recipients (SIXR): a new paradigm in pig-to-primate xenotransplantation? Int J Surg. 2015;23(Pt B):301-305. - PubMed
  37. Iwase H, Ekser B, Zhou H, et al. Further evidence for a sustained systemic inflammatory response in xenograft recipients (SIXR). Xenotransplantation. 2015;22(5):399-405. - PubMed
  38. Li J, Hara H, Wang Y, Esmon C, Cooper DKC, Iwase H. Evidence for the important role of inflammation in xenotransplantation. J Inflamm (Lond). 2019;16:10. - PubMed
  39. Baldan N, Rigotti P, Calabrese F, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events? Am J Transplant. 2004;4(4):475-481. - PubMed

Publication Types