Display options
Share it on

J Card Surg. 2021 Oct 21; doi: 10.1111/jocs.16103. Epub 2021 Oct 21.

Intraoperative transit time flow measurements during off-pump coronary artery bypass surgery: The impact of coronary stenosis on competitive flow.

Journal of cardiac surgery

Frank R Halfwerk, Pien Spoor, Silvia Mariani, Rob Hagmeijer, Jan G Grandjean

Affiliations

  1. Department of Cardio-Thoracic Surgery, Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, The Netherlands.
  2. Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
  3. Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.
  4. Department of Engineering Fluid Dynamics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.

PMID: 34676586 DOI: 10.1111/jocs.16103

Abstract

BACKGROUND: Combining preoperative angiography findings with intraoperative transit time flow measurements (TTFM) may improve patency of coronary artery bypass grafts. Nevertheless, graft flow might be impaired by native coronary flow based on the severity of stenoses, with inferior long-term outcomes. This study investigates the impact of left anterior descending artery (LAD) stenosis on competitive flow measured in left internal mammary artery (LIMA) grafts during off-pump coronary artery bypass grafting.

METHODS: Fifty patients were included in this prospective single-center cohort study. LAD stenosis was assessed with quantitative coronary analysis (QCA) and stratified into three groups based on its severity. TTFM of LIMA grafts were performed with LAD open and temporarily occluded. Change in mean graft flow after LAD snaring was the primary endpoint. Secondary endpoints included further TTFM parameters, clinical outcomes, and competitive flow index (CFI), defined as the ratio of mean graft flow with open or closed LAD.

RESULTS: Mean LAD stenosis as objectified with QCA was 58 ± 15%. Mean LIMA graft flow increased from 20 ml/min with open LAD to 30 ml/min with snared LAD (p < .001). TTFM cut-off values for graft patency improved in 26%-42% of patients after LAD occlusion. Median CFI was 0.66 (IQR: 0.56-0.82). Postoperative myocardial infarction occurred in 2.0% of patients, 120-day mortality was 0%, and 2-year mortality was 6.0%.

CONCLUSIONS: Routine snaring of the LAD with CFI calculation during coronary artery bypass grafting is useful to detect significant competitive flow in LIMA grafts, potentially preventing unnecessary intraoperative graft revisions.

© 2021 The Authors. Journal of Cardiac Surgery published by Wiley Periodicals LLC.

Keywords: CABG; arterial grafts; coronary artery disease; minimally invasive surgery; off-pump coronary artery bypass grafting

References

  1. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. doi:10.1093/eurheartj/ehy394 - PubMed
  2. Leape LL, Park RE, Bashore TM, Harrison JK, Davidson CJ, Brook RH. Effect of variability in the interpretation of coronary angiograms on the appropriateness of use of coronary revascularization procedures. Am Heart J. 2000;139(1 Pt 1):106-113. doi:10.1016/s0002-8703(00)90316-8 - PubMed
  3. Sen T, Kilit C, Astarcioglu MA, et al. Comparison of quantitative and qualitative coronary angiography: computer versus the eye. Cardiovasc J Afr. 2018;29(5):278-282. doi:10.5830/CVJA-2018-024 - PubMed
  4. Glineur D, Grau JB, Etienne PY, et al. Impact of preoperative fractional flow reserve on arterial bypass graft anastomotic function: the IMPAG trial. Eur Heart J. 2019;40(29):2421-2428. doi:10.1093/eurheartj/ehz329 - PubMed
  5. Gaudino M, Benedetto U, Fremes S, et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N Engl J Med. 2018;378(22):2069-2077. doi:10.1056/NEJMoa1716026 - PubMed
  6. Gaudino M, Benedetto U, Fremes S, et al. Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: a Systematic Review and Meta-analysis. JAMA. 2020;324(2):179-187. doi:10.1001/jama.2020.8228 - PubMed
  7. Schwann TA, Tatoulis J, Puskas J, et al. Worldwide Trends in Multi-arterial Coronary Artery Bypass Grafting Surgery 2004-2014: a Tale of 2 Continents. Semin Thorac Cardiovasc Surg. 2017;29(3):273-280. doi:10.1053/j.semtcvs.2017.05.018 - PubMed
  8. Sabik JF. Should coronary artery bypass grafting be performed in patients with moderate stenosis of the left anterior descending coronary artery? Circulation. 2016;133(2):111-113. doi:10.1161/Circulationaha.115.020084 - PubMed
  9. Glineur D, Hanet C. Competitive flow and arterial graft a word of caution. Eur J Cardiothorac Surg. 2012;41(4):768-769. doi:10.1093/ejcts/ezr064 - PubMed
  10. Lust RM, Zeri RS, Spence PA, et al. Competitive flow from a fully patent coronary artery does not limit acute mammary graft flow. Ann Thorac Surg. 1992;54(1):21-25. - PubMed
  11. Nordgaard H, Nordhaug D, Kirkeby-Garstad I, Lovstakken L, Vitale N, Haaverstad R. Different graft flow patterns due to competitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry in a porcine model. Eur J Cardiothorac Surg. 2009;36(1):137-142. doi:10.1016/j.ejcts.2009.02.036 - PubMed
  12. Karapanos NT, Suddendorf SH, Li Z, Huebner M, Joyce LD, Park SJ. The impact of competitive flow on distal coronary flow and on graft flow during coronary artery bypass surgery. Interact Cardiovasc Thorac Surg.  2011;12(6):993-997. doi:10.1510/icvts.2010.255398 - PubMed
  13. Kawasuji M, Sakakibara N, Takemura H, Tedoriya T, Ushijima T, Watanabe Y. Is internal thoracic artery grafting suitable for a moderately stenotic coronary artery? J Thorac Cardiov Sur. 1996;112(2):253-259. doi:10.1016/S0022-5223(96)70246-5 - PubMed
  14. Bolotin G, Kypson AP, Nifong LW, Chitwood WR Jr. A technique for evaluating competitive flow for intraoperative decision making in coronary artery surgery. Ann Thorac Surg. 2003;76(6):2118-2120. doi:10.1016/s0003-4975(03)00652-0 - PubMed
  15. Balacumaraswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg. 2007;83(6):2251-2257. doi:10.1016/j.athoracsur.2006.12.025 - PubMed
  16. Amin S, Pinho-Gomes AC, Taggart DP. Relationship of intraoperative transit time flowmetry findings to angiographic graft patency at follow-up. Ann Thorac Surg. 2016;101(5):1996-2006. doi:10.1016/j.athoracsur.2015.10.101 - PubMed
  17. Becit N, Erkut B, Ceviz M, Unlu Y, Colak A, Kocak H. The impact of intraoperative transit time flow measurement on the results of on-pump coronary surgery. Eur J Cardiothorac Surg. 2007;32(2):313-318. doi:10.1016/j.ejcts.2007.04.037 - PubMed
  18. Niclauss L. Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. Eur J Cardiothorac Surg. 2017;51(1):26-33. doi:10.1093/ejcts/ezw203 - PubMed
  19. Aldea GS, Bakaeen FG, Pal J, et al. The Society of Thoracic Surgeons Clinical Practice Guidelines on arterial conduits for coronary artery bypass grafting. Ann Thorac Surg. 2016;101(2):801-809. doi:10.1016/j.athoracsur.2015.09.100 - PubMed
  20. Vandenbroucke JP, Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297. doi:10.1371/journal.pmed.0040297 - PubMed
  21. Netherlands Heart Registry (NHR). Netherlands Heart Registry (NHR) Annual Report 2019; 2020.  https://nederlandsehartregistratie.nl/wp-content/uploads/2020/01/NHR-Rapportage-2019-per-spread-230120.pdf - PubMed
  22. Chen ML, Mo YH, Wang YC, et al. 64-slice CT angiography for the detection of functionally significant coronary stenoses: comparison with stress myocardial perfusion imaging. Br J Radiol. 2012;85(1012):368-376. doi:10.1259/bjr/59249210 - PubMed
  23. Nallamothu BK, Spertus JA, Lansky AJ, et al. Comparison of clinical interpretation with visual assessment and quantitative coronary angiography in patients undergoing percutaneous coronary intervention in contemporary practice: the Assessing Angiography (A2) project. Circulation. 2013;127(17):1793-1800. doi:10.1161/CIRCULATIONAHA.113.001952 - PubMed
  24. Siregar S, Groenwold RH, de Mol BA, et al. Evaluation of cardiac surgery mortality rates: 30-day mortality or longer follow-up? Eur J Cardiothorac Surg. 2013;44(5):875-883. doi:10.1093/ejcts/ezt119 - PubMed
  25. Netherlands Heart Registry (NHR). Handbook v2018.0.4; 2018. Accessed February 19, 2018. https://nederlandsehartregistratie.nl/handboeken/ - PubMed
  26. Honda K, Okamura Y, Nishimura Y, et al. Graft flow assessment using a transit time flow meter in fractional flow reserve-guided coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2015;149(6):1622-1628. doi:10.1016/j.jtcvs.2015.02.050 - PubMed
  27. Amin S, Madsen PL, Werner RS, Krasopoulos G, Taggart DP. Intraoperative flow profiles of arterial and venous bypass grafts to the left coronary territory. Eur J Cardiothorac Surg. 2019;56(1):64-71. doi:10.1093/ejcts/ezy473 - PubMed
  28. Jokinen JJ, Werkkala K, Vainikka T, Perakyla T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur J Cardiothorac Surg. 2011;39(6):918-923. doi:10.1016/j.ejcts.2010.10.006 - PubMed
  29. Di Giammarco G, Canosa C, Foschi M, et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. Eur J Cardiothorac Surg. 2014;45(3):e41-e45. doi:10.1093/ejcts/ezt580 - PubMed
  30. Forcillo J, Noiseux N, Dubois MJ, et al. Intra-operative graft blood flow measurements for composite and sequential coronary artery bypass grafting. Int J Artif Organs. 2014;37(5):382-391. doi:10.5301/ijao.5000327 - PubMed
  31. Sorm Z, Vojacek J, Cermakova E, Pudil R, Stock UA, Harrer J. Elective minimally invasive coronary artery bypass: shunt or tournique occlusion? Assessment of a protective role of perioperative left anterior descending shunting on myocardial damageA prospective randomized study. J Cardiothorac Surg. 2012;7:69. doi:10.1186/1749-8090-7-69 - PubMed
  32. Wippermann J, Albes JM, Brandes H, Kosmehl H, Bruhin R, Wahlers T. Acute effects of tourniquet occlusion and intraluminal shunts in beating heart surgery. Eur J Cardiothorac Surg. 2003;24(5):757-761. doi:10.1016/s1010-7940(03)00520-7 - PubMed
  33. Zimarino M, Gallina S, Di Fulvio M, et al. Intraoperative ischemia and long-term events after minimally invasive coronary surgery. Ann Thorac Surg. 2004;78(1):135-141. doi:10.1016/j.athoracsur.2003.12.030 - PubMed
  34. Silva M, Rong LQ, Naik A, et al. Intraoperative graft flow profiles in coronary artery bypass surgery: a meta-analysis. J Card Surg. 2020;35(2):279-285. doi:10.1111/jocs.14359 - PubMed
  35. Singh SK, Desai ND, Chikazawa G, et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J Thorac Cardiovasc Surg. 2010;139(2):294-301. 301 e1. doi:10.1016/j.jtcvs.2009.09.048 - PubMed
  36. Shah R, Yow E, Jones WS, et al. Comparison of visual assessment of coronary stenosis with independent quantitative coronary angiography: Findings from the Prospective Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) trial. Am Heart J. 2017;184:1-9. doi:10.1016/j.ahj.2016.10.014 - PubMed
  37. Lee SW, Jo JY, Kim WJ, Choi DK, Choi IC. Patient and haemodynamic factors affecting intraoperative graft flow during coronary artery bypass grafting: an observational pilot study. Sci Rep. 2020;10(1):12968. doi:10.1038/s41598-020-69924-w - PubMed

Publication Types