Display options
Share it on

Cell Rep. 2021 Oct 26;37(4):109878. doi: 10.1016/j.celrep.2021.109878.

Lymphocyte access to lymphoma is impaired by high endothelial venule regression.

Cell reports

Lutz Menzel, Maria Zschummel, Tadhg Crowley, Vedran Franke, Michael Grau, Carolin Ulbricht, Anja Hauser, Volker Siffrin, Marc Bajénoff, Sophie E Acton, Altuna Akalin, Georg Lenz, Gerald Willimsky, Uta E Höpken, Armin Rehm

Affiliations

  1. Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine Berlin, Germany, 13125 Berlin, Germany.
  2. Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine Berlin, 13125 Berlin, Germany.
  3. Neuroimmunology Laboratory, Max-Delbrück-Center for Molecular Medicine Berlin, Germany, 13125 Berlin, Germany.
  4. Bioinformatics & Omics Data Science Platform, BIMSB at Max-Delbrück-Center for Molecular Medicine Berlin, 13125 Berlin, Germany.
  5. Medical Department A for Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany.
  6. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, and Immune Dynamics, Deutsches Rheumaforschungszentrum Berlin, 10117 Berlin, Germany.
  7. Neuroimmunology Laboratory, Max-Delbrück-Center for Molecular Medicine Berlin, Germany, 13125 Berlin, Germany; Neuroimmunology Laboratory, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany.
  8. Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France.
  9. Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK.
  10. Institute of Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; German Cancer Research Center, 69120 Heidelberg, Germany; German Cancer Consortium, partner site Berlin, Germany.
  11. Translational Tumorimmunology, Max-Delbrück-Center for Molecular Medicine Berlin, Germany, 13125 Berlin, Germany. Electronic address: [email protected].

PMID: 34706240 PMCID: PMC8567313 DOI: 10.1016/j.celrep.2021.109878

Abstract

Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvironment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endothelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive. Here, we report that lymphoma causes severe HEV regression in mouse models that phenocopies aggressive human B cell lymphomas. HEV dedifferentiation occurrs as a consequence of a disrupted lymph-carrying conduit system. Mechanosensitive fibroblastic reticular cells then deregulate CCL21 migration paths, followed by deterioration of dendritic cell proximity to HEVs. Loss of this crosstalk deprives HEVs of lymphotoxin-β-receptor (LTβR) signaling, which is indispensable for their differentiation and lymphocyte transmigration. Collectively, this study reveals a remodeling cascade of the lymph node microenvironment that is detrimental for immune cell trafficking in lymphoma.

Copyright © 2021 Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association. Published by Elsevier Inc. All rights reserved.

Keywords: B cell lymphoma; angiogenesis; blood endothelial cells; chemokines; dendritic cells; high endothelial venules; immune cell trafficking; immunosurveillance; lymphotoxin beta-receptor; tumor stroma

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. J Immunol. 2007 Oct 1;179(7):4376-82 - PubMed
  2. Front Immunol. 2020 Dec 03;11:591741 - PubMed
  3. Nature. 2014 Oct 23;514(7523):498-502 - PubMed
  4. Nat Immunol. 2019 May;20(5):602-612 - PubMed
  5. Nat Commun. 2019 Nov 28;10(1):5417 - PubMed
  6. Nat Immunol. 2007 Oct;8(10):1076-85 - PubMed
  7. J Clin Oncol. 2019 Feb 20;37(6):481-489 - PubMed
  8. Nat Commun. 2019 Apr 15;10(1):1739 - PubMed
  9. Cancer Res. 2018 May 1;78(9):2370-2382 - PubMed
  10. Blood. 2014 Nov 6;124(19):2973-82 - PubMed
  11. EMBO J. 2013 Jan 23;32(2):219-30 - PubMed
  12. Nature. 2011 Nov 13;479(7374):542-6 - PubMed
  13. Blood. 2010 Jun 10;115(23):4725-33 - PubMed
  14. Cell Rep. 2019 Nov 26;29(9):2810-2822.e5 - PubMed
  15. Cell. 2020 Feb 20;180(4):764-779.e20 - PubMed
  16. Immunity. 2011 Dec 23;35(6):945-57 - PubMed
  17. J Immunol. 2004 Nov 15;173(10):6161-8 - PubMed
  18. Blood. 2009 Dec 3;114(24):4989-97 - PubMed
  19. Cell Rep. 2019 Mar 12;26(11):3116-3131.e5 - PubMed
  20. Immunity. 2016 Oct 18;45(4):877-888 - PubMed
  21. Trends Immunol. 2016 Nov;37(11):764-777 - PubMed
  22. J Immunol. 2010 Apr 15;184(8):4247-57 - PubMed
  23. Nat Immunol. 2007 Jul;8(7):743-52 - PubMed
  24. Nat Biomed Eng. 2021 Jul 19;: - PubMed
  25. Haematologica. 2011 Jul;96(7):996-1001 - PubMed
  26. Blood. 2011 Jul 28;118(4):1020-33 - PubMed
  27. J Exp Med. 2000 Nov 20;192(10):1425-40 - PubMed
  28. Nat Immunol. 2007 Nov;8(11):1255-65 - PubMed
  29. J Immunol. 2009 Oct 1;183(7):4273-83 - PubMed
  30. J Cell Biol. 1991 Oct;115(1):85-95 - PubMed
  31. Immunity. 2005 Jan;22(1):19-29 - PubMed
  32. J Clin Invest. 2020 Apr 1;130(4):1576-1585 - PubMed
  33. Cancer Cell. 2019 Sep 16;36(3):250-267.e9 - PubMed
  34. Cancer Cell. 2010 Mar 16;17(3):262-72 - PubMed
  35. J Exp Med. 2013 Mar 11;210(3):465-73 - PubMed
  36. Immunity. 2013 May 23;38(5):1013-24 - PubMed
  37. J Exp Med. 2013 Aug 26;210(9):1657-64 - PubMed
  38. Blood. 2011 Dec 1;118(23):6115-22 - PubMed
  39. Nat Immunol. 2014 Oct;15(10):982-95 - PubMed
  40. Elife. 2019 Oct 01;8: - PubMed
  41. J Immunol. 2006 Sep 1;177(5):3369-79 - PubMed
  42. Nat Immunol. 2019 Nov;20(11):1506-1516 - PubMed
  43. J Pathol. 1990 Jun;161(2):173-7 - PubMed
  44. J Immunol. 2012 Apr 1;188(7):3426-33 - PubMed
  45. Blood. 2020 Feb 20;135(8):523-533 - PubMed
  46. J Immunol. 2013 Mar 1;190(5):2036-48 - PubMed
  47. J Exp Med. 2003 Sep 1;198(5):715-24 - PubMed
  48. Blood. 2004 Jun 1;103(11):4164-72 - PubMed
  49. Nat Immunol. 2008 Apr;9(4):415-23 - PubMed
  50. Immunity. 2010 May 28;32(5):703-13 - PubMed
  51. Methods Mol Biol. 2017;1623:37-50 - PubMed
  52. Cancer Res. 2020 Mar 15;80(6):1316-1329 - PubMed
  53. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  54. Blood. 2018 Aug 30;132(9):924-934 - PubMed
  55. Nat Immunol. 2020 Apr;21(4):369-380 - PubMed
  56. Nat Immunol. 2006 Apr;7(4):344-53 - PubMed
  57. Immunity. 2005 Nov;23(5):539-50 - PubMed
  58. Nat Commun. 2020 Jul 30;11(1):3798 - PubMed
  59. Sci Rep. 2017 Aug 24;7(1):9269 - PubMed
  60. Nat Commun. 2014 Sep 30;5:5057 - PubMed
  61. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26328-26339 - PubMed
  62. Nat Rev Clin Oncol. 2019 Oct;16(10):599-600 - PubMed
  63. Eur J Immunol. 1983 Aug;13(8):663-9 - PubMed
  64. Nat Rev Immunol. 2012 Nov;12(11):762-73 - PubMed

Publication Types