Display options
Share it on

Front Endocrinol (Lausanne). 2021 Sep 27;12:744527. doi: 10.3389/fendo.2021.744527. eCollection 2021.

Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society.

Frontiers in endocrinology

Stephanie Lucas, Michaela Tencerova, Benoit von der Weid, Thomas Levin Andersen, Camille Attané, Friederike Behler-Janbeck, William P Cawthorn, Kaisa K Ivaska, Olaia Naveiras, Izabela Podgorski, Michaela R Reagan, Bram C J van der Eerden

Affiliations

  1. Marrow Adiposity and Bone Lab-MABLab ULR4490, Univ. Littoral Côte d'Opale, Boulogne-sur-Mer, Univ. Lille, CHU Lille, Lille, France.
  2. Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.
  3. School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  4. Swiss Institute of Bioinformatics, Lausanne, Switzerland.
  5. Department of Biomedical Sciences, Faculty of Biology and Medicine, Université de Lausanne, Lausanne, Switzerland.
  6. Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.
  7. Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
  8. Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
  9. Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
  10. Institute of Pharmacology and Structural Biology, Université de Toulouse, CNRS UMR 5089, Toulouse, France.
  11. Equipe labellisée Ligue contre le cancer, Toulouse, France.
  12. Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  13. Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  14. British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
  15. Institute of Biomedicine, University of Turku, Turku, Finland.
  16. Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), Université de Lausanne, Lausanne, Switzerland.
  17. Department of Pharmacology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States.
  18. Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States.
  19. Graduate School for Biomedical Science, Tufts University, Boston, MA, United States.
  20. Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.

PMID: 34646237 PMCID: PMC8503265 DOI: 10.3389/fendo.2021.744527

Abstract

Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.

Copyright © 2021 Lucas, Tencerova, von der Weid, Andersen, Attané, Behler-Janbeck, Cawthorn, Ivaska, Naveiras, Podgorski, Reagan and van der Eerden.

Keywords: biobanking; bone marrow adipocytes; bone marrow adiposity; bone marrow stromal cells; cell isolation protocols; clinical studies; international research networks; patient information

Conflict of interest statement

BE is chair and coordinator of the BMAS Working Group on Biobanking. All authors are members of the BMAS Working Group on Biobanking. BE, WC and ON are members of the BMAS Executive Board. SL, MR and

References

  1. Cytotherapy. 2019 Oct;21(10):1019-1024 - PubMed
  2. Osteoporos Int. 2011 Feb;22(2):391-420 - PubMed
  3. J Orthop Res. 1991 Sep;9(5):641-50 - PubMed
  4. Am J Physiol Cell Physiol. 2012 Jan 15;302(2):C327-59 - PubMed
  5. PLoS Med. 2015 Mar 31;12(3):e1001779 - PubMed
  6. Pathobiology. 2007;74(4):206-11 - PubMed
  7. J Bone Miner Res. 2010 Mar;25(3):492-8 - PubMed
  8. Nat Commun. 2020 Jun 18;11(1):3097 - PubMed
  9. Cytotherapy. 2015 Sep;17(9):1169-77 - PubMed
  10. EPMA J. 2016 Feb 22;7:4 - PubMed
  11. Appl Clin Inform. 2019 Aug;10(4):679-692 - PubMed
  12. J Mol Med (Berl). 1996 Jun;74(6):297-312 - PubMed
  13. J Hematother Stem Cell Res. 2003 Feb;12(1):115-22 - PubMed
  14. Endocrinology. 2017 Mar 1;158(3):490-502 - PubMed
  15. J Intern Med. 2018 Feb;283(2):121-139 - PubMed
  16. Int J Mol Sci. 2017 Jun 13;18(6): - PubMed
  17. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016 Mar;59(3):379-84 - PubMed
  18. Endocr Rev. 2019 Oct 1;40(5):1187-1206 - PubMed
  19. Front Endocrinol (Lausanne). 2019 Oct 18;10:691 - PubMed
  20. J Cell Biochem. 2016 Oct;117(10):2370-6 - PubMed
  21. Front Endocrinol (Lausanne). 2020 Jan 24;10:923 - PubMed
  22. J Transl Med. 2019 May 22;17(1):172 - PubMed
  23. Clin Chem. 2013 May;59(5):833-45 - PubMed
  24. BMC Genomics. 2011 May 05;12:212 - PubMed
  25. Stem Cells Dev. 2012 Jan 20;21(2):273-83 - PubMed
  26. Front Endocrinol (Lausanne). 2019 Aug 29;10:587 - PubMed
  27. Lancet Oncol. 2008 May;9(5):485-93 - PubMed
  28. Science. 2012 Sep 14;337(6100):1292 - PubMed
  29. Front Genet. 2021 Apr 21;12:663487 - PubMed
  30. Magn Reson Imaging. 2017 Jun;39:157-161 - PubMed
  31. Curr Opin Biotechnol. 2020 Oct;65:45-51 - PubMed
  32. Front Immunol. 2019 Nov 08;10:2474 - PubMed
  33. Genet Test Mol Biomarkers. 2017 Mar;21(3):171-177 - PubMed
  34. Stem Cells. 2001;19(3):180-92 - PubMed
  35. EBioMedicine. 2019 Aug;46:387-398 - PubMed
  36. Cytokine. 2011 Dec;56(3):662-8 - PubMed
  37. Int J Lab Hematol. 2008 Oct;30(5):349-64 - PubMed
  38. Genome Med. 2010 Oct 05;2(10):72 - PubMed
  39. Curr Osteoporos Rep. 2019 Dec;17(6):416-428 - PubMed
  40. J Empir Res Hum Res Ethics. 2020 Dec;15(5):425-442 - PubMed
  41. Cytotherapy. 2006;8(4):315-7 - PubMed
  42. Biopreserv Biobank. 2013 Oct;11(5):309-15 - PubMed
  43. Nat Methods. 2012 Sep;9(9):885-8 - PubMed
  44. Metabolites. 2020 Jun 03;10(6): - PubMed
  45. Front Endocrinol (Lausanne). 2020 Feb 28;11:65 - PubMed
  46. Exp Hematol. 2013 Jun;41(6):558-566.e2 - PubMed
  47. Int J Mol Sci. 2020 Jul 05;21(13): - PubMed
  48. Hist Stud Nat Sci. 2011;41(4):365-404 - PubMed
  49. Eur J Radiol. 2006 Jun;58(3):444-9 - PubMed
  50. Diabetes. 2018 Jul;67(7):1380-1394 - PubMed
  51. J Clin Invest. 2000 Jun;105(12):1663-8 - PubMed
  52. Calcif Tissue Int. 2017 May;100(5):461-475 - PubMed
  53. J Biol Chem. 1964 Mar;239:753-5 - PubMed
  54. J Clin Endocrinol Metab. 2020 Jul 1;105(7): - PubMed
  55. Biopreserv Biobank. 2017 Aug;15(4):375-383 - PubMed
  56. Cell Stem Cell. 2008 Apr 10;2(4):313-9 - PubMed
  57. Pathol Oncol Res. 2018 Oct;24(4):771-785 - PubMed
  58. Eur J Health Law. 2004 Mar;11(1):93-107 - PubMed
  59. Annu Rev Physiol. 2020 Feb 10;82:461-484 - PubMed
  60. Bone. 2009 Jun;44(6):1092-6 - PubMed
  61. Clin Chem. 2018 Aug;64(8):1158-1182 - PubMed
  62. Science. 2012 Jul 6;337(6090):37-8 - PubMed
  63. J Cell Physiol. 2018 Feb;233(2):1500-1511 - PubMed
  64. Eur J Endocrinol. 2018 Oct 01;179(4):R165-R182 - PubMed
  65. Eur J Hum Genet. 2015 Jan;23(1):22-8 - PubMed
  66. Cell Rep. 2019 May 14;27(7):2050-2062.e6 - PubMed
  67. Cell Rep. 2020 Jan 28;30(4):949-958.e6 - PubMed
  68. Curr Mol Biol Rep. 2018;4(2):41-49 - PubMed
  69. Cell Stem Cell. 2021 Jun 3;28(6):1125-1135.e7 - PubMed
  70. Lancet Oncol. 2006 Mar;7(3):266-9 - PubMed
  71. Ann Oncol. 2017 May 1;28(5):922-930 - PubMed
  72. STAR Protoc. 2021 Jun 24;2(3):100629 - PubMed

Publication Types