Display options
Share it on

Mar Drugs. 2021 Sep 28;19(10). doi: 10.3390/md19100546.

A Marine λ-Oligocarrageenan Inhibits Migratory and Invasive Ability of MDA-MB-231 Human Breast Cancer Cells through Actions on Heparanase Metabolism and MMP-14/MMP-2 Axis.

Marine drugs

Rémi Cousin, Hugo Groult, Chanez Manseur, Romain Ferru-Clément, Mario Gani, Rachel Havret, Claire Toucheteau, Grégoire Prunier, Béatrice Colin, Franck Morel, Jean-Marie Piot, Isabelle Lanneluc, Kévin Baranger, Thierry Maugard, Ingrid Fruitier-Arnaudin

Affiliations

  1. BCBS Group (Biotechnologies et Chimie des Bioressources pour la Santé), Laboratoire Littoral Environnement et Sociétés, La Rochelle University, UMR CNRS 7266, 17000 La Rochelle, France.
  2. Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, Poitiers University, LITEC EA 4331, 86073 Poitiers, France.
  3. Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France.

PMID: 34677445 PMCID: PMC8539239 DOI: 10.3390/md19100546

Abstract

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.

Keywords: MDA-MB-231; MMP-14; breast cancer; heparanase; heparin; metalloproteinase; oligosaccharide; polysaccharide; shRNA; λ-carrageenan

References

  1. Int J Mol Med. 2013 May;31(5):1234-42 - PubMed
  2. Clin Cancer Res. 2011 Mar 15;17(6):1382-93 - PubMed
  3. PLoS One. 2009;4(4):e5181 - PubMed
  4. iScience. 2019 May 31;15:360-390 - PubMed
  5. Oncol Rep. 2020 Aug;44(2):711-721 - PubMed
  6. Anticancer Res. 2019 Oct;39(10):5261-5284 - PubMed
  7. Int J Breast Cancer. 2014;2014:839094 - PubMed
  8. Cell Adh Migr. 2020 Dec;14(1):118-128 - PubMed
  9. Front Biosci (Landmark Ed). 2015 Jun 01;20:1144-63 - PubMed
  10. Prog Brain Res. 2014;214:313-51 - PubMed
  11. Cancer Res. 2019 Sep 15;79(18):4557-4566 - PubMed
  12. Nat Cell Biol. 2000 Oct;2(10):737-44 - PubMed
  13. Trends Cancer. 2017 Jun;3(6):391-406 - PubMed
  14. Exp Cell Res. 2008 Aug 1;314(13):2501-14 - PubMed
  15. Carbohydr Polym. 2016 Jan 1;135:316-23 - PubMed
  16. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  17. Mar Drugs. 2019 Feb 27;17(3): - PubMed
  18. FEBS J. 2013 May;280(10):2294-306 - PubMed
  19. Nat Med. 1999 Jul;5(7):793-802 - PubMed
  20. FEBS J. 2017 Jan;284(1):42-55 - PubMed
  21. Oncotarget. 2014 May 15;5(9):2529-41 - PubMed
  22. BMC Complement Altern Med. 2016 Aug 04;16:270 - PubMed
  23. Br J Cancer. 2007 Sep 17;97(6):761-8 - PubMed
  24. Eur J Cancer. 2010 May;46(7):1177-80 - PubMed
  25. Biomolecules. 2020 Dec 30;11(1): - PubMed
  26. Int J Cancer. 1987 Oct 15;40(4):511-8 - PubMed
  27. Rambam Maimonides Med J. 2011 Jan 31;2(1):e0019 - PubMed
  28. Mar Drugs. 2017 May 09;15(5): - PubMed
  29. Sci Rep. 2015 Jun 22;5:11062 - PubMed
  30. Cancer Res. 2015 Sep 15;75(18):3946-57 - PubMed
  31. Int J Mol Sci. 2019 Feb 15;20(4): - PubMed
  32. FASEB J. 2019 Feb;33(2):2910-2927 - PubMed
  33. J Biol Chem. 2008 Jun 27;283(26):18167-76 - PubMed
  34. Matrix Biol. 2021 Jun;100-101:173-181 - PubMed
  35. Molecules. 2018 Nov 08;23(11): - PubMed
  36. J Cell Biochem. 2009 Feb 1;106(2):200-9 - PubMed
  37. J Biol Chem. 2008 Nov 21;283(47):32628-36 - PubMed
  38. World J Gastroenterol. 2009 Nov 21;15(43):5442-8 - PubMed
  39. J Gastrointest Surg. 2008 Oct;12(10):1674-81; discussion 1681-2 - PubMed
  40. Compr Rev Food Sci Food Saf. 2016 Mar;15(2):237-250 - PubMed
  41. Carbohydr Polym. 2018 Oct 15;198:385-400 - PubMed
  42. Exp Ther Med. 2014 Oct;8(4):1213-1218 - PubMed
  43. Oncol Rep. 2017 Jan;37(1):179-184 - PubMed
  44. Adv Exp Med Biol. 2020;1221:493-522 - PubMed
  45. Sci Rep. 2019 Apr 30;9(1):6654 - PubMed
  46. J Biol Chem. 2004 Feb 27;279(9):8047-55 - PubMed
  47. N Engl J Med. 2020 Feb 27;382(9):810-821 - PubMed
  48. Invasion Metastasis. 1992;12(2):112-27 - PubMed
  49. Clin Breast Cancer. 2021 Oct;21(5):383-390 - PubMed
  50. Carbohydr Polym. 2017 Jun 15;166:156-165 - PubMed
  51. J Biol Chem. 2004 Oct 15;279(42):44084-92 - PubMed

Publication Types