Display options
Share it on

Diagnostics (Basel). 2021 Sep 28;11(10). doi: 10.3390/diagnostics11101788.

Fast SARS-CoV-2 Variant Detection Using Snapback Primer High-Resolution Melting.

Diagnostics (Basel, Switzerland)

Joseph C Lownik, Jared S Farrar, Grayson W Way, Angela McKay, Pavitra Roychoudhury, Alexander L Greninger, Rebecca K Martin

Affiliations

  1. Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
  2. Center for Clinical and Translation Research, Virginia Commonwealth University, Richmond, VA 23298, USA.
  3. Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98102, USA.
  4. Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.

PMID: 34679489 PMCID: PMC8534650 DOI: 10.3390/diagnostics11101788

Abstract

SARS-CoV-2, the virus responsible for COVID-19, emerged in late 2019 and has since spread throughout the world, infecting over 200 million people. The fast spread of SARS-CoV-2 showcased the need for rapid and sensitive testing methodologies to help track the disease. Over the past 18 months, numerous SARS-CoV-2 variants have emerged. Many of these variants are suggested to be more transmissible as well as less responsive to neutralization by vaccine-induced antibodies. Viral whole-genome sequencing is the current standard for tracking these variants. However, whole-genome sequencing is costly and the technology and expertise are limited to larger reference laboratories. Here, we present the feasibility of a fast, inexpensive methodology using snapback primer-based high-resolution melting to test for >20 high-consequence SARS-CoV-2 spike mutations. This assay can distinguish between multiple variant lineages and be completed in roughly 2 h for less than $10 per sample.

Keywords: COVID testing; COVID-19; PCR; SARS-CoV-2; high-resolution melting; snapback primer

References

  1. Cell. 2021 May 27;184(11):2939-2954.e9 - PubMed
  2. Nature. 2021 Apr;592(7852):116-121 - PubMed
  3. J Infect Chemother. 2021 Sep;27(9):1336-1341 - PubMed
  4. Nat Med. 2021 Apr;27(4):622-625 - PubMed
  5. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  6. Nature. 2021 May;593(7858):270-274 - PubMed
  7. J Med Virol. 2021 Sep;93(9):5588-5593 - PubMed
  8. Bioinformatics. 2011 Apr 1;27(7):1019-20 - PubMed
  9. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 - PubMed
  10. J Clin Microbiol. 2020 Jul 23;58(8): - PubMed
  11. Nature. 2021 May;593(7857):130-135 - PubMed
  12. Nature. 2021 May;593(7857):142-146 - PubMed
  13. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 - PubMed
  14. Nat Rev Microbiol. 2021 Jul;19(7):409-424 - PubMed
  15. Nature. 2021 Apr;592(7854):438-443 - PubMed
  16. Dent Mater. 2021 Mar;37(3):e95-e97 - PubMed
  17. Nat Med. 2021 Apr;27(4):620-621 - PubMed
  18. Cell Host Microbe. 2021 Mar 10;29(3):477-488.e4 - PubMed
  19. Science. 2021 Apr 9;372(6538): - PubMed
  20. Clin Chem. 2008 Oct;54(10):1648-56 - PubMed
  21. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 - PubMed
  22. Nat Commun. 2021 Jun 23;12(1):3903 - PubMed
  23. Clin Chem. 2011 Sep;57(9):1303-10 - PubMed
  24. Bioinformatics. 2018 Dec 1;34(23):4121-4123 - PubMed
  25. Lancet. 2021 Feb 6;397(10273):452-455 - PubMed
  26. J Clin Microbiol. 2020 Dec 17;59(1): - PubMed
  27. Elife. 2021 Jun 09;10: - PubMed
  28. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1933-8 - PubMed
  29. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8609-14 - PubMed
  30. Nature. 2020 Mar;579(7798):265-269 - PubMed
  31. Genes (Basel). 2021 Apr 05;12(4): - PubMed

Publication Types