Display options
Share it on

J Synchrotron Radiat. 2021 Nov 01;28:1891-1908. doi: 10.1107/S1600577521010511. Epub 2021 Nov 03.

Time-of-flight photoelectron momentum microscopy with 80-500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter.

Journal of synchrotron radiation

G Schönhense, K Medjanik, O Fedchenko, A Zymaková, S Chernov, D Kutnyakhov, D Vasilyev, S Babenkov, H J Elmers, P Baumgärtel, P Goslawski, G Öhrwall, T Grunske, T Kauerhof, K von Volkmann, M Kallmayer, M Ellguth, A Oelsner

Affiliations

  1. Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany.
  2. BESSY?II, Helmholtz-Zentrum, 12489 Berlin, Germany.
  3. MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden.
  4. APE GmbH, 13053 Berlin, Germany.
  5. Surface Concept GmbH, 55128 Mainz, Germany.

PMID: 34738944 PMCID: PMC8570213 DOI: 10.1107/S1600577521010511

Abstract

The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical `pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAX II) and 1.25 MHz (at BESSY II). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to <800 nm. In this novel approach to `sub-µm-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.

open access.

Keywords: ARPES; momentum microscopy; photoelectron diffraction; pulse picking; time-of-flight spectroscopy

References

  1. Rev Sci Instrum. 2020 Dec 1;91(12):123110 - PubMed
  2. Nat Commun. 2021 Aug 24;12(1):5088 - PubMed
  3. Nat Commun. 2014 May 30;5:4010 - PubMed
  4. Opt Lett. 2015 May 15;40(10):2265-8 - PubMed
  5. Philos Trans A Math Phys Eng Sci. 2009 Sep 28;367(1903):3637-64 - PubMed
  6. Ultramicroscopy. 2015 Dec;159 Pt 3:453-63 - PubMed
  7. Rev Sci Instrum. 2017 Nov;88(11):113104 - PubMed
  8. J Synchrotron Radiat. 2019 Nov 1;26(Pt 6):1996-2012 - PubMed
  9. Phys Rev Lett. 2020 Aug 28;125(9):096401 - PubMed
  10. Rev Sci Instrum. 2019 Aug;90(8):083001 - PubMed
  11. Phys Rev Lett. 2012 Dec 28;109(26):264801 - PubMed
  12. Nat Mater. 2017 Jun;16(6):615-621 - PubMed
  13. Ultramicroscopy. 2011 Mar;111(4):273-81 - PubMed
  14. Science. 2017 Jul 21;357(6348):287-290 - PubMed
  15. Science. 2019 Sep 20;365(6459):1278-1281 - PubMed
  16. Ultramicroscopy. 2017 Dec;183:19-29 - PubMed
  17. Rev Sci Instrum. 2020 Jan 1;91(1):013109 - PubMed
  18. Science. 2000 Mar 24;287(5461):2237-40 - PubMed
  19. Ultramicroscopy. 2015 Dec;159 Pt 3:520-9 - PubMed
  20. Ultramicroscopy. 2015 Dec;159 Pt 3:488-96 - PubMed
  21. ACS Nano. 2020 Nov 25;: - PubMed
  22. Rev Sci Instrum. 2011 Sep;82(9):095113 - PubMed
  23. Ultramicroscopy. 2019 Nov;206:112815 - PubMed
  24. Rev Sci Instrum. 2009 Jan;80(1):015101 - PubMed
  25. Rev Sci Instrum. 2021 May 1;92(5):053703 - PubMed
  26. Ultramicroscopy. 2013 Jul;130:54-62 - PubMed
  27. Chem Rev. 2021 Mar 10;121(5):2816-2856 - PubMed
  28. J Phys Condens Matter. 2020 Mar 27;32(13):135501 - PubMed

Publication Types