Display options
Share it on

PLoS One. 2021 Nov 05;16(11):e0259363. doi: 10.1371/journal.pone.0259363. eCollection 2021.

Tensile modulus of human orbital wall bones cut in sagittal and coronal planes.

PloS one

Krzysztof Zerdzicki, Pawel Lemski, Pawel Klosowski, Andrzej Skorek, Marcin Zmuda Trzebiatowski, Mateusz Koberda

Affiliations

  1. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland.
  2. Medical University of Gda?sk, Department of Otolaryngology, Gda?sk, Poland.
  3. Medical University of Gdansk, Department of Ophtalmology, Gdansk, Poland.

PMID: 34739503 PMCID: PMC8570484 DOI: 10.1371/journal.pone.0259363

Abstract

In the current research, 68 specimens of orbital superior and/or medial walls taken from 33 human cadavers (12 females, 21 males) were subjected to uniaxial tension untill fracture. The samples were cut in the coronal (38 specimens) and sagittal (30 specimens) planes of the orbital wall. Apparent density (ρapp), tensile Young's modulus (E-modulus) and ultimate tensile strength (UTS) were identified. Innovative test protocols were used to minimize artifacts and analyze the obtained data: (1) grips dedicated to non-symmetrical samples clamping were applied for mechanical testing, (2) non-contact measuring system of video-extensometer was employed for displacement registration, (3) ink imprint technique coupled with CAD analysis was applied to precisely access the cross-sectional areas of tested samples. With regard to a pooled group, apparent density for the coronal and sagittal cut plane was equal 1.53 g/cm3 and 1.57 g/cm3, tensile Young's modulus 2.36 GPa and 2.14 GPa, and ultimate tensile strength 12.66 MPa and 14.35 MPa, respectively. No significant statistical differences (p > 0.05) were found for all the analyzed parameters when comparing coronal and sagittal plane cut groups. These observations confirmed the hypothesis that direction of sample cut does not affect the mechanical response of the orbital wall tissue, thus suggesting that mechanical properties of orbital wall bone show isotropic character.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Plast Reconstr Surg. 2006 Jun;117(7):2373-80; discussion 2381 - PubMed
  2. Ann Plast Surg. 2010 Apr;64(4):471-6 - PubMed
  3. Vision Res. 2006 May;46(11):1724-31 - PubMed
  4. Arch Ophthal. 1950 Jul;44(1):1-21 - PubMed
  5. J Biomech. 2001 May;34(5):569-77 - PubMed
  6. J Biomech. 2014 Mar 21;47(5):1180-5 - PubMed
  7. J Biomech. 2016 Feb 29;49(4):520-7 - PubMed
  8. JAMA. 2013 Nov 27;310(20):2191-4 - PubMed
  9. J Ophthalmol. 2014;2014:231436 - PubMed
  10. Auris Nasus Larynx. 2009 Aug;36(4):431-7 - PubMed
  11. Clin Exp Otorhinolaryngol. 2019 May;12(2):231-232 - PubMed
  12. Br J Plast Surg. 2003 Jan;56(1):3-9 - PubMed
  13. Comput Methods Biomech Biomed Engin. 2011 Dec;14(12):1049-57 - PubMed
  14. Acta Bioeng Biomech. 2012;14(2):53-60 - PubMed
  15. Int J Oral Maxillofac Surg. 2009 Oct;38(10):1088-93 - PubMed
  16. Keio J Med. 2006 Mar;55(1):1-8 - PubMed
  17. J Craniomaxillofac Surg. 2013 Dec;41(8):710-7 - PubMed
  18. J Craniofac Surg. 2012 May;23(3):669-74 - PubMed
  19. Plast Reconstr Surg. 2012 Oct;130(4):898-905 - PubMed
  20. Ear Nose Throat J. 2012 Jan;91(1):24-5 - PubMed
  21. J Craniomaxillofac Surg. 2010 Jun;38(4):306-13 - PubMed
  22. Sci Rep. 2020 Sep 17;10(1):15275 - PubMed
  23. J Stomatol Oral Maxillofac Surg. 2019 Feb;120(1):16-20 - PubMed
  24. J Biomech. 2003 Jul;36(7):897-904 - PubMed
  25. J Mech Behav Biomed Mater. 2015 Jan;41:302-14 - PubMed
  26. Bone. 2019 Apr;121:89-99 - PubMed
  27. J Biomech. 2009 Sep 18;42(13):2129-35 - PubMed
  28. Ophthalmic Plast Reconstr Surg. 2000 May;16(3):188-200 - PubMed

Publication Types