Display options
Share it on

Mol Cell. 2021 Dec 02;81(23):4924-4941.e10. doi: 10.1016/j.molcel.2021.10.013. Epub 2021 Nov 04.

A multi-omic single-cell landscape of human gynecologic malignancies.

Molecular cell

Matthew J Regner, Kamila Wisniewska, Susana Garcia-Recio, Aatish Thennavan, Raul Mendez-Giraldez, Venkat S Malladi, Gabrielle Hawkins, Joel S Parker, Charles M Perou, Victoria L Bae-Jump, Hector L Franco

Affiliations

  1. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  2. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  3. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  4. Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
  5. Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  6. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  7. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  8. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  9. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: [email protected].

PMID: 34739872 PMCID: PMC8642316 DOI: 10.1016/j.molcel.2021.10.013

Abstract

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.

Copyright © 2021 Elsevier Inc. All rights reserved.

Keywords: chromatin accessibility; endometrial cancer; enhancer elements; gastro-intestinal stromal tumors; gene regulation; intratumoral heterogeneity; ovarian cancer; scATAC-seq; scRNA-seq; single-cell genomics

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. Bioinformatics. 2011 Apr 1;27(7):1017-8 - PubMed
  2. Pak J Med Sci. 2017 Jul-Aug;33(4):1013-1017 - PubMed
  3. J Pathol. 2020 Oct;252(2):201-214 - PubMed
  4. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 - PubMed
  5. Genome Biol. 2020 Jan 22;21(1):17 - PubMed
  6. NPJ Syst Biol Appl. 2019 Jun 14;5:21 - PubMed
  7. Bioinform Biol Insights. 2020 Jul 1;14:1177932220938063 - PubMed
  8. Nat Immunol. 2019 Feb;20(2):163-172 - PubMed
  9. Cells. 2019 Aug 09;8(8): - PubMed
  10. PLoS Comput Biol. 2013;9(8):e1003118 - PubMed
  11. Nat Genet. 2021 Mar;53(3):403-411 - PubMed
  12. Oxid Med Cell Longev. 2017;2017:6018675 - PubMed
  13. J Natl Cancer Inst. 2018 Apr 1;110(4):354-361 - PubMed
  14. Cell. 2017 Dec 14;171(7):1573-1588.e28 - PubMed
  15. Am J Cancer Res. 2011;1(7):897-912 - PubMed
  16. Science. 2016 Nov 11;354(6313):769-773 - PubMed
  17. MMWR Morb Mortal Wkly Rep. 2018 Dec 07;67(48):1333-1338 - PubMed
  18. Hum Mol Genet. 2015 Jul 1;24(13):3595-607 - PubMed
  19. Oncotarget. 2016 Aug 2;7(31):49322-49333 - PubMed
  20. Cancer Res. 2020 Oct 15;80(20):4335-4345 - PubMed
  21. Cell. 2020 Nov 12;183(4):1103-1116.e20 - PubMed
  22. Cell Syst. 2017 Mar 22;4(3):255-259 - PubMed
  23. Database (Oxford). 2019 Jan 1;2019: - PubMed
  24. Nature. 2011 Jun 29;474(7353):609-15 - PubMed
  25. Oncogene. 2010 Oct 28;29(43):5785-95 - PubMed
  26. Cell. 2013 Dec 19;155(7):1479-91 - PubMed
  27. Cancer Res. 2003 Jul 1;63(13):3695-700 - PubMed
  28. Am J Pathol. 2012 Aug;181(2):684-92 - PubMed
  29. Nucleic Acids Res. 2021 Jan 8;49(D1):D1074-D1082 - PubMed
  30. Sci Rep. 2021 Mar 15;11(1):6047 - PubMed
  31. Genome Biol. 2014;15(12):550 - PubMed
  32. Oncogene. 2000 Apr 6;19(15):1941-9 - PubMed
  33. J Mol Med (Berl). 2021 Aug;99(8):1125-1137 - PubMed
  34. CA Cancer J Clin. 2018 Jan;68(1):7-30 - PubMed
  35. Gynecol Oncol. 2005 Feb;96(2):287-95 - PubMed
  36. Gynecol Oncol. 2012 Jun;125(3):727-33 - PubMed
  37. Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92 - PubMed
  38. R J. 2016 Aug;8(1):289-317 - PubMed
  39. Nat Protoc. 2013 Nov;8(11):2180-96 - PubMed
  40. Nat Med. 2020 May;26(5):792-802 - PubMed
  41. PLoS One. 2020 Dec 15;15(12):e0243791 - PubMed
  42. Bioinformatics. 2017 Jul 1;33(13):2037-2039 - PubMed
  43. Cell Res. 2020 Nov;30(11):1024-1042 - PubMed
  44. Nature. 2015 Jul 23;523(7561):486-90 - PubMed
  45. Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49 - PubMed
  46. Mol Cell. 2017 Apr 20;66(2):285-299.e5 - PubMed
  47. Nucleic Acids Res. 2016 Mar 18;44(5):e45 - PubMed
  48. Cell Rep. 2020 May 19;31(7):107628 - PubMed
  49. Sci Rep. 2018 Jun 15;8(1):9227 - PubMed
  50. Diagnostics (Basel). 2020 Dec 11;10(12): - PubMed
  51. Nat Commun. 2020 May 8;11(1):2285 - PubMed
  52. Neoplasia. 2010 Feb;12(2):161-72 - PubMed
  53. EMBO J. 2015 Feb 12;34(4):475-90 - PubMed
  54. Bioinformatics. 2015 Jun 15;31(12):1974-80 - PubMed
  55. Nucleic Acids Res. 2016 Jan 4;44(D1):D938-43 - PubMed
  56. Nature. 2020 Jul;583(7818):699-710 - PubMed
  57. Nat Biotechnol. 2019 Aug;37(8):925-936 - PubMed
  58. Science. 2014 Jun 20;344(6190):1396-401 - PubMed
  59. Nature. 2015 Feb 19;518(7539):317-30 - PubMed
  60. Nat Genet. 2018 Sep;50(9):1262-1270 - PubMed
  61. Mod Pathol. 1998 Aug;11(8):728-34 - PubMed
  62. Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245 - PubMed
  63. CA Cancer J Clin. 2021 Jan;71(1):7-33 - PubMed
  64. Bioinformatics. 2016 Sep 15;32(18):2847-9 - PubMed
  65. Nat Med. 2020 Aug;26(8):1271-1279 - PubMed
  66. Genome Res. 2018 Feb;28(2):159-170 - PubMed
  67. Transl Oncol. 2010 Aug 01;3(4):218-29 - PubMed
  68. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  69. Nat Genet. 2016 Feb;48(2):176-82 - PubMed
  70. Cell Syst. 2015 Dec 23;1(6):417-425 - PubMed
  71. Nature. 2017 Dec 21;552(7685):368-373 - PubMed
  72. Endocr Relat Cancer. 2012 Apr 10;19(2):197-208 - PubMed
  73. Science. 2015 May 22;348(6237):910-4 - PubMed
  74. Genome Med. 2021 Jul 9;13(1):111 - PubMed
  75. Cell. 2013 Feb 28;152(5):1173-83 - PubMed
  76. Cell Rep. 2019 Nov 5;29(6):1718-1727.e8 - PubMed
  77. Surg Pathol Clin. 2016 Sep;9(3):405-26 - PubMed
  78. Nat Biotechnol. 2019 Dec;37(12):1458-1465 - PubMed
  79. Genome Biol. 2008;9(9):R137 - PubMed
  80. Nat Med. 2020 Oct;26(10):1644-1653 - PubMed
  81. Cell. 2013 Jul 18;154(2):442-51 - PubMed
  82. Science. 2018 Oct 26;362(6413): - PubMed
  83. Int J Gynecol Cancer. 2005 Sep-Oct;15(5):679-91 - PubMed
  84. Science. 2018 Sep 28;361(6409):1380-1385 - PubMed
  85. Bioinformatics. 2017 Apr 15;33(8):1179-1186 - PubMed
  86. Cell Syst. 2019 Apr 24;8(4):329-337.e4 - PubMed
  87. BMC Bioinformatics. 2013 Jan 16;14:7 - PubMed
  88. Int J Womens Health. 2015 Feb 04;7:189-203 - PubMed
  89. BMC Bioinformatics. 2010 May 11;11:237 - PubMed
  90. Cancer Cell. 2018 Apr 9;33(4):690-705.e9 - PubMed
  91. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  92. Cell. 2017 Aug 24;170(5):875-888.e20 - PubMed
  93. Histol Histopathol. 2009 Mar;24(3):309-16 - PubMed
  94. Oncogene. 2015 Jan 15;34(3):373-83 - PubMed
  95. Nat Med. 2018 Aug;24(8):1277-1289 - PubMed
  96. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  97. Cell Death Dis. 2020 May 14;11(5):371 - PubMed
  98. Nat Biotechnol. 2019 Dec;37(12):1452-1457 - PubMed
  99. Nat Protoc. 2013 Nov;8(11):2281-2308 - PubMed
  100. Nat Genet. 2020 Mar;52(3):294-305 - PubMed
  101. J Biol Chem. 2007 Jan 5;282(1):637-46 - PubMed
  102. Nat Commun. 2013;4:2612 - PubMed
  103. Expert Rev Mol Diagn. 2009 Sep;9(6):555-66 - PubMed
  104. Differentiation. 2016 Oct - Nov;92(4):204-215 - PubMed
  105. Biometrics. 2017 Sep;73(3):811-821 - PubMed
  106. PLoS One. 2014 Nov 14;9(11):e113232 - PubMed
  107. Nature. 2013 May 2;497(7447):67-73 - PubMed
  108. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  109. Science. 2014 Dec 12;346(6215):1373-7 - PubMed
  110. Semin Cancer Biol. 2020 Apr;61:110-120 - PubMed
  111. Clin Chem. 2008 Dec;54(12):e11-79 - PubMed
  112. Methods Mol Biol. 2014;1150:81-95 - PubMed

Publication Types

Grant support