Display options
Share it on

Nat Metab. 2021 Oct;3(10):1313-1326. doi: 10.1038/s42255-021-00471-y. Epub 2021 Oct 14.

Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation.

Nature metabolism

Johanna Merlin, Stoyan Ivanov, Adélie Dumont, Alexey Sergushichev, Julie Gall, Marion Stunault, Marion Ayrault, Nathalie Vaillant, Alexia Castiglione, Amanda Swain, Francois Orange, Alexandre Gallerand, Thierry Berton, Jean-Charles Martin, Stefania Carobbio, Justine Masson, Inna Gaisler-Salomon, Pierre Maechler, Stephen Rayport, Judith C Sluimer, Erik A L Biessen, Rodolphe R Guinamard, Emmanuel L Gautier, Edward B Thorp, Maxim N Artyomov, Laurent Yvan-Charvet

Affiliations

  1. Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.
  2. Computer Technologies Department, ITMO University, Saint Petersburg, Russia.
  3. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
  4. Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), Nice, France.
  5. Centre de Recherche Cardiovasculaire et Nutritionnelle (C2VN), INSERM, Institut National de la Recherche Agricole (INRA), BioMet, Aix-Marseille University, Marseille, France.
  6. Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland.
  7. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
  8. Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
  9. Inserm UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris, France.
  10. Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA.
  11. Department of Psychiatry, Columbia University, New York, NY, USA.
  12. SPC-IBBR, University of Haifa, Haifa, Israel.
  13. Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
  14. Institute for Molecular Cardiovascular Research, RWTH Klinikum Aachen, Aachen, Germany.
  15. Sorbonne Université, INSERM, UMR_S 1166 ICAN, Paris, France.
  16. Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
  17. Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France. [email protected].

PMID: 34650273 PMCID: PMC7611882 DOI: 10.1038/s42255-021-00471-y

Abstract

Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017). - PubMed
  2. Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016). - PubMed
  3. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017). - PubMed
  4. Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of Injury. Cell Metab. 31, 518–533 (2020). - PubMed
  5. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017). - PubMed
  6. Han, C. Z. & Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell 147, 1442–1445 (2011). - PubMed
  7. DeBerardinis, R. J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010). - PubMed
  8. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016). - PubMed
  9. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015). - PubMed
  10. Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018). - PubMed
  11. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 (2019). - PubMed
  12. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). - PubMed
  13. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009). - PubMed
  14. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010). - PubMed
  15. Grabner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE - PubMed
  16. Jais, A. et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158, 25–40 (2014). - PubMed
  17. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006). - PubMed
  18. Perales-Clemente, E. et al. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc. Natl Acad. Sci. USA 105, 18735–18739 (2008). - PubMed
  19. Fernández-Ayala, D. J. et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 9, 449–460 (2009). - PubMed
  20. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015). - PubMed
  21. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998). - PubMed
  22. A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009). - PubMed
  23. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010). - PubMed
  24. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018). - PubMed
  25. Tavakoli, S. et al. Characterization of macrophage polarization states using combined measurement of 2-deoxyglucose and glutamine accumulation: implications for imaging of atherosclerosis. Arterioscler Thromb. Vasc. Biol. 37, 1840–1848 (2017). - PubMed
  26. Johnson, M. O. et al. Distinct regulation of T - PubMed
  27. Papathanassiu, A. E. et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017). - PubMed
  28. O’Neill, L. A. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019). - PubMed
  29. Liu, P. S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017). - PubMed
  30. Scialò, F., Fernández-Ayala, D. J. & Sanz, A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front. Physiol. 8, 428 (2017). - PubMed
  31. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009). - PubMed
  32. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013). - PubMed
  33. Guarás, A. et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15, 197–209 (2016). - PubMed
  34. Stipanuk, M.H and Caudill, M.A. Biochemical, Physiological and Molecular Aspects of Human Nutrition 3rd edn (Elsevier/Saunders, 2013). - PubMed
  35. Jin, H. et al. Integrative multiomics analysis of human atherosclerosis reveals a serum response factor-driven network associated with intraplaque hemorrhage. Clin. Transl. Med 11, e458 (2021). - PubMed
  36. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012). - PubMed
  37. Devos, M. et al. Keratinocyte expression of A20/TNFAIP3 controls skin inflammation associated with atopic dermatitis and psoriasis. J. Invest. Dermatol. 139, 135–145 (2019). - PubMed
  38. Aidoud, N. et al. A combination of lipidomics, MS imaging, and PET scan imaging reveals differences in cerebral activity in rat pups according to the lipid quality of infant formulas. FASEB J. 32, 4776–4790 (2018). - PubMed

Publication Types

Grant support