Display options
Share it on

Biomedicines. 2021 Oct 11;9(10). doi: 10.3390/biomedicines9101443.

Bis-thiobarbiturates as Promising Xanthine Oxidase Inhibitors: Synthesis and Biological Evaluation.

Biomedicines

João L Serrano, Diana Lopes, Melani J A Reis, Renato E F Boto, Samuel Silvestre, Paulo Almeida

Affiliations

  1. CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
  2. CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal.

PMID: 34680559 PMCID: PMC8533253 DOI: 10.3390/biomedicines9101443

Abstract

Xanthine oxidase (XO) is the enzyme responsible for the conversion of endogenous purines into uric acid. Therefore, this enzyme has been associated with pathological conditions caused by hyperuricemia, such as the disease commonly known as gout. Barbiturates and their congeners thiobarbiturates represent a class of heterocyclic drugs capable of influencing neurotransmission. However, in recent years a very large group of potential pharmaceutical and medicinal applications have been related to their structure. This great diversity of biological activities is directly linked to the enormous opportunities found for chemical change off the back of these findings. With this in mind, sixteen bis-thiobarbiturates were synthesized in moderate to excellent reactional yields, and their antioxidant, anti-proliferative, and XO inhibitory activity were evaluated. In general, all bis-thiobarbiturates present a good antioxidant performance and an excellent ability to inhibit XO at a concentration of 30 µM, eight of them are superior to those observed with the reference drug allopurinol (Allo), nevertheless they were not as effective as febuxostat. The most powerful bis-thiobarbiturate within this set showed in vitro IC

Keywords: antioxidant; bis-thiobarbiturates; cytotoxicity; in silico evaluation; xanthine oxidase

References

  1. Curr Drug Targets. 2018;19(1):38-54 - PubMed
  2. Bioorg Med Chem. 2015 Sep 1;23(17):6049-58 - PubMed
  3. Clin Pharmacol Ther. 2019 Jun;105(6):1386-1394 - PubMed
  4. J Med Chem. 2015 May 14;58(9):4066-72 - PubMed
  5. Expert Opin Ther Pat. 2020 Oct;30(10):769-780 - PubMed
  6. ChemMedChem. 2018 Sep 19;13(18):1923-1930 - PubMed
  7. Eur J Med Chem. 2017 Jul 28;135:491-516 - PubMed
  8. Cancer Med. 2016 Mar;5(3):546-57 - PubMed
  9. Sci Rep. 2017 Mar 03;7:42717 - PubMed
  10. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 - PubMed
  11. Molecules. 2020 Apr 20;25(8): - PubMed
  12. Evid Based Complement Alternat Med. 2020 Feb 25;2020:9531725 - PubMed
  13. Brief Bioinform. 2019 Sep 27;20(5):1878-1912 - PubMed
  14. Eur J Pharm Sci. 2019 Sep 1;137:104964 - PubMed
  15. J Med Chem. 2018 Feb 8;61(3):1375-1379 - PubMed
  16. Lancet. 2016 Oct 22;388(10055):2039-2052 - PubMed
  17. Bioorg Chem. 2021 Feb;107:104620 - PubMed
  18. Front Chem. 2020 Aug 07;8:612 - PubMed
  19. Bioorg Med Chem Lett. 2019 Feb 1;29(3):430-434 - PubMed
  20. Drug Dev Res. 2021 May;82(3):364-373 - PubMed
  21. J Med Chem. 2010 Apr 8;53(7):2719-40 - PubMed
  22. Redox Biol. 2019 Feb;21:101070 - PubMed
  23. J Med Chem. 2002 Jun 6;45(12):2615-23 - PubMed
  24. Oxid Med Cell Longev. 2016;2016:3527579 - PubMed
  25. PLoS One. 2018 Dec 7;13(12):e0208333 - PubMed
  26. Front Med (Lausanne). 2018 May 31;5:160 - PubMed
  27. J Nat Prod. 1998 Jan;61(1):71-6 - PubMed
  28. Curr Rheumatol Rep. 2014 Feb;16(2):400 - PubMed
  29. Eur J Med Chem. 2018 Jan 1;143:829-842 - PubMed

Publication Types

Grant support