Display options
Share it on

Retrovirology. 2021 Oct 28;18(1):33. doi: 10.1186/s12977-021-00576-y.

Residues T.

Retrovirology

Sergio Castro-Gonzalez, Yuexuan Chen, Jared Benjamin, Yuhang Shi, Ruth Serra-Moreno

Affiliations

  1. Department of Chemistry, Umeå University, Umeå, Sweden.
  2. Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
  3. Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA. [email protected].

PMID: 34711257 PMCID: PMC8555152 DOI: 10.1186/s12977-021-00576-y

Abstract

BACKGROUND: Autophagy plays an important role as a cellular defense mechanism against intracellular pathogens, like viruses. Specifically, autophagy orchestrates the recruitment of specialized cargo, including viral components needed for replication, for lysosomal degradation. In addition to this primary role, the cleavage of viral structures facilitates their association with pattern recognition receptors and MHC-I/II complexes, which assists in the modulation of innate and adaptive immune responses against these pathogens. Importantly, whereas autophagy restricts the replicative capacity of human immunodeficiency virus type 1 (HIV-1), this virus has evolved the gene nef to circumvent this process through the inhibition of early and late stages of the autophagy cascade. Despite recent advances, many details of the mutual antagonism between HIV-1 and autophagy still remain unknown. Here, we uncover the genetic determinants that drive the autophagy-mediated restriction of HIV-1 as well as the counteraction imposed by Nef. Additionally, we also examine the implications of autophagy antagonism in HIV-1 infectivity.

RESULTS: We found that sustained activation of autophagy potently inhibits HIV-1 replication through the degradation of HIV-1 Gag, and that this effect is more prominent for nef-deficient viruses. Gag re-localizes to autophagosomes where it interacts with the autophagosome markers LC3 and SQSTM1. Importantly, autophagy-mediated recognition and recruitment of Gag requires the myristoylation and ubiquitination of this virus protein, two post-translational modifications that are essential for Gag's central role in virion assembly and budding. We also identified residues T

CONCLUSIONS: This study provides evidence that autophagy antagonism is important for virus replication and suggests that the ability of Nef to counteract autophagy may have played an important role in mucosal transmission. Hence, disabling Nef in combination with the pharmacological manipulation of autophagy represents a promising strategy to prevent HIV spread.

© 2021. The Author(s).

Keywords: Autophagy; Gag; HIV-1; Nef

References

  1. J Biol Chem. 2000 Jan 14;275(2):992-8 - PubMed
  2. Eur J Immunol. 2014 Aug;44(8):2508-20 - PubMed
  3. Retrovirology. 2013 Jul 29;10:79 - PubMed
  4. Science. 2002 May 3;296(5569):913-6 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6626-33 - PubMed
  6. Mol Cell. 2009 May 15;34(3):259-69 - PubMed
  7. Drugs. 2007;67(3):369-91 - PubMed
  8. J Cell Biol. 2009 Jul 27;186(2):255-68 - PubMed
  9. EMBO J. 2001 Apr 2;20(7):1593-604 - PubMed
  10. Nat Cell Biol. 2010 Sep;12(9):836-41 - PubMed
  11. Annu Rev Biochem. 2017 Jun 20;86:225-244 - PubMed
  12. J Biol Chem. 2010 Apr 2;285(14):10850-61 - PubMed
  13. Biochim Biophys Acta. 2003 Jul 11;1614(1):62-72 - PubMed
  14. J Immunol. 2010 Dec 15;185(12):7349-57 - PubMed
  15. Mol Biol Cell. 2019 Apr 15;30(9):1098-1107 - PubMed
  16. Autophagy. 2021 Feb;17(2):553-577 - PubMed
  17. Trends Immunol. 2012 Oct;33(10):475-87 - PubMed
  18. J Immunol. 2006 Oct 15;177(8):5163-8 - PubMed
  19. PLoS Pathog. 2009 May;5(5):e1000429 - PubMed
  20. Immunol Rev. 2009 Jan;227(1):189-202 - PubMed
  21. J Mol Biol. 2017 Feb 17;429(4):486-496 - PubMed
  22. Cell Microbiol. 2014 Nov;16(11):1627-36 - PubMed
  23. Cell Cycle. 2010 Apr 1;9(7):1295-1307 - PubMed
  24. J Virol. 2017 Mar 29;91(8): - PubMed
  25. Traffic. 2006 Jun;7(6):731-45 - PubMed
  26. J Clin Invest. 2017 Feb 1;127(2):651-656 - PubMed
  27. Annu Rev Cell Dev Biol. 2011;27:107-32 - PubMed
  28. J Exp Med. 2007 Jan 22;204(1):25-31 - PubMed
  29. Front Cell Dev Biol. 2018 Oct 12;6:137 - PubMed
  30. EBioMedicine. 2020 Mar;53:102682 - PubMed
  31. Science. 2014 Jul 11;345(6193):136-7 - PubMed
  32. Int J Cell Biol. 2012;2012:673290 - PubMed
  33. J Immunol. 1986 Apr 1;136(7):2348-57 - PubMed
  34. J Virol. 1998 Apr;72(4):2855-64 - PubMed
  35. Infect Genet Evol. 2016 Dec;46:169-179 - PubMed
  36. Mol Cell. 2019 Jan 17;73(2):339-353.e6 - PubMed
  37. Genes Dev. 2007 Nov 15;21(22):2861-73 - PubMed
  38. Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67 - PubMed
  39. Autophagy. 2017 Sep 2;13(9):1602-1612 - PubMed
  40. J Virol. 2016 Nov 14;90(23):10915-10927 - PubMed
  41. Cell Host Microbe. 2009 Nov 19;6(5):409-21 - PubMed
  42. Autophagy. 2016;12(1):1-222 - PubMed
  43. J Virol. 2016 Nov 14;90(23):10701-10714 - PubMed
  44. Front Microbiol. 2014 May 20;5:232 - PubMed
  45. J Virol. 1986 Aug;59(2):284-91 - PubMed
  46. FEBS Lett. 2015 Nov 14;589(22):3461-70 - PubMed
  47. J Biol Chem. 2008 May 30;283(22):15370-80 - PubMed
  48. Nature. 2015 Oct 8;526(7572):218-23 - PubMed
  49. Cell Host Microbe. 2016 Sep 14;20(3):381-391 - PubMed
  50. J Virol. 2015 Dec 09;90(4):1944-63 - PubMed
  51. Nat Rev Microbiol. 2015 Jul;13(7):414-25 - PubMed
  52. J Pathol. 2010 May;221(1):3-12 - PubMed
  53. J Biol Chem. 2007 Aug 17;282(33):24131-45 - PubMed
  54. Acta Biochim Biophys Sin (Shanghai). 2015 Aug;47(8):571-80 - PubMed
  55. Biochim Biophys Acta. 1999 Aug 12;1451(1):1-16 - PubMed
  56. Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):417-8 - PubMed
  57. J Immunol. 2009 Aug 15;183(4):2415-24 - PubMed
  58. J Virol. 2000 Sep;74(18):8670-9 - PubMed
  59. PLoS Pathog. 2015 Jun 26;11(6):e1005018 - PubMed
  60. Sci Rep. 2021 Feb 26;11(1):4767 - PubMed
  61. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889-92 - PubMed
  62. Front Immunol. 2018 May 09;9:1023 - PubMed
  63. Retrovirology. 2011 Dec 15;8:103 - PubMed
  64. Virology. 2014 Nov;468-470:454-461 - PubMed
  65. J Cell Biol. 2003 Oct 27;163(2):257-69 - PubMed
  66. Immunity. 2007 Jul;27(1):135-44 - PubMed
  67. Essays Biochem. 2013;55:65-78 - PubMed
  68. Immunity. 2007 Jul;27(1):11-21 - PubMed
  69. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006924 - PubMed
  70. Biochem Biophys Res Commun. 2018 Sep 18;503(4):2306-2311 - PubMed
  71. PLoS Pathog. 2020 Apr 17;16(4):e1008487 - PubMed
  72. Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7 - PubMed
  73. Biochemistry. 1993 Oct 5;32(39):10436-43 - PubMed
  74. PLoS Pathog. 2014 May 22;10(5):e1004151 - PubMed
  75. J Virol. 2007 Dec;81(23):12899-910 - PubMed
  76. Autophagy. 2015;11(10):1864-77 - PubMed
  77. PLoS Pathog. 2013;9(7):e1003487 - PubMed
  78. J Cell Biol. 2004 Dec 6;167(5):903-13 - PubMed
  79. J Virol. 2007 Sep;81(17):9193-201 - PubMed
  80. Autophagy. 2018;14(8):1435-1455 - PubMed
  81. Cell Host Microbe. 2011 Jan 20;9(1):46-57 - PubMed
  82. Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9 - PubMed
  83. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5781-5 - PubMed
  84. J Exp Med. 2009 Jun 8;206(6):1273-89 - PubMed
  85. J Virol. 1999 Mar;73(3):1964-73 - PubMed
  86. J Virol. 1995 Jul;69(7):4053-9 - PubMed
  87. Virus Res. 2014 Nov 26;193:89-107 - PubMed

Publication Types

Grant support