Display options
Share it on

Microb Ecol. 2021 Nov 06; doi: 10.1007/s00248-021-01917-2. Epub 2021 Nov 06.

Gardnerella Vaginalis Dominates Multi-Species Biofilms in both Pre-Conditioned and Competitive In Vitro Biofilm Formation Models.

Microbial ecology

Aliona S Rosca, Joana Castro, Ângela França, Mario Vaneechoutte, Nuno Cerca

Affiliations

  1. Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal.
  2. Laboratory Bacteriology Research (LBR), Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
  3. Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal. [email protected].

PMID: 34741647 DOI: 10.1007/s00248-021-01917-2

Abstract

Bacterial vaginosis (BV) is one of the most common bacterial vaginal infections worldwide. Despite its high prevalence, BV etiology is still unknown. Nevertheless, a hallmark of BV is the presence of a highly structured polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp. and other anaerobic species, of which co-colonization with Fannyhessea vaginae is considered an important diagnostic marker. We previously developed an in vitro biofilm model wherein Gardnerella was first allowed to establish an early biofilm that served as a scaffold for other species to adhere to. To better understand ecological interactions between BV-associated bacteria, we compared triple-species biofilms formed using two distinct models: a pre-conditioned (wherein Gardnerella vaginalis formed the early biofilm) model and a competitive (wherein all three bacteria were co-incubated together) model. Interestingly, synergistic growth interactions were more significant in the competitive model. Furthermore, the biofilm structure and species-specific distribution, as assessed by confocal laser scanning microscopy and using peptide nucleic acid fluorescence in situ hybridization method, revealed two very different triple-species morphotypes, suggesting that different interactions occur in the different models. Interestingly, independent of the model or triple-species consortium tested, we observed that G. vaginalis represented most of the biofilm bacterial composition, further highlighting the relevance of this taxon in BV.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Anaerobes; Bacterial synergy; Bacterial vaginosis; Gardnerella; Triple-species biofilms

References

  1. Jung H-S, Ehlers MM, Lombaard H et al (2017) Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol 43:651–667. https://doi.org/10.1080/1040841X.2017.1291579 - PubMed
  2. Muzny CA, Taylor CM, Swords WE et al (2019) An updated conceptual model on the pathogenesis of bacterial vaginosis. J Infect Dis 220:1399–1405. https://doi.org/10.1093/infdis/jiz342 - PubMed
  3. Swidsinski A, Mendling W, Loening-Baucke V et al (2005) Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106:1013–1023. https://doi.org/10.1097/01.AOG.0000183594.45524.d2 - PubMed
  4. Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci 108:4680–4687. https://doi.org/10.1073/pnas.1002611107 - PubMed
  5. Onderdonk AB, Delaney ML, Fichorova N (2016) The human microbiome during bacterial vaginosis. Clin Microbiol Rev 29:223–238. https://doi.org/10.1128/CMR.00075-15 - PubMed
  6. Fredricks DN, Fiedler TL, Thomas KK et al (2007) Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 45:3270–3276. https://doi.org/10.1128/JCM.01272-07 - PubMed
  7. Srinivasan S, Munch MM, Sizova MV et al (2016) More easily cultivated than identified: classical isolation with molecular identification of vaginal bacteria. J Infect Dis 214:S21–S28. https://doi.org/10.1093/infdis/jiw192 - PubMed
  8. Danielsson D, Teigen PK, Moi H (2011) The genital econiche: focus on microbiota and bacterial vaginosis. Ann N Y Acad Sci 1230:48–58. https://doi.org/10.1111/j.1749-6632.2011.06041.x - PubMed
  9. Vaneechoutte M, Guschin A, Van Simaey L et al (2019) Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int J Syst Evol Microbiol 69:679–687. https://doi.org/10.1099/ijsem.0.003200 - PubMed
  10. Spiegel CA, Davick P, Totten PA et al (1983) Gardnerella vaginalis and anaerobic bacteria in the etiology of bacterial (nonspecific) vaginosis. Scand J Infect Dis Suppl 40:41–46 - PubMed
  11. Swidsinski A, Verstraelen H, Loening-Baucke V et al (2013) Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS ONE 8:e53997. https://doi.org/10.1371/journal.pone.0053997 - PubMed
  12. Van De Wijgert JHHM, Borgdorff H, Verhelst R et al (2014) The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One 9. https://doi.org/10.1371/journal.pone.0105998 - PubMed
  13. Alves P, Castro J, Sousa C et al (2014) Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J Infect Dis 210:593–596. https://doi.org/10.1093/infdis/jiu131 - PubMed
  14. Machado A, Cerca N (2015) Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J Infect Dis 212:1856–1861. https://doi.org/10.1093/infdis/jiv338 - PubMed
  15. Vaneechoutte M (2017) Lactobacillus iners, the unusual suspect. Res Microbiol 168:826–836. https://doi.org/10.1016/j.resmic.2017.09.003 - PubMed
  16. Rosca AS, Castro J, Cerca N (2020) Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes. PeerJ 8:e9917. https://doi.org/10.7717/peerj.9917 - PubMed
  17. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165. https://doi.org/10.1016/j.mimet.2007.11.010 - PubMed
  18. Azeredo J, Azevedo NF, Briandet R et al (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351. https://doi.org/10.1080/1040841X.2016.1208146 - PubMed
  19. Machado A, Almeida C, Salgueiro D et al (2013) Fluorescence in situ hybridization method using peptide nucleic acid probes for rapid detection of Lactobacillus and Gardnerella spp. BMC Microbiol 13:82. https://doi.org/10.1186/1471-2180-13-82 - PubMed
  20. Hardy L, Jespers V, Dahchour N et al (2015) Unravelling the bacterial vaginosis-associated biofilm: a multiplex Gardnerella vaginalis and Atopobium vaginae fluorescence in situ hybridization assay using peptide nucleic acid probes. PLoS ONE 10:e0136658. https://doi.org/10.1371/journal.pone.0136658 - PubMed
  21. Castro J, Machado D, Cerca N (2019) Unveiling the role of Gardnerella vaginalis in polymicrobial bacterial vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME J 13:1306–1317. https://doi.org/10.1038/s41396-018-0337-0 - PubMed
  22. Castro J, Rosca AS, Muzny CA, Cerca N (2021) Atopobium vaginae and Prevotella bivia are able to incorporate and influence gene expression in a pre-formed Gardnerella vaginalis biofilm. Pathogens 10:247. https://doi.org/10.3390/pathogens10020247 - PubMed
  23. Rasband W (1997) ImageJ Software. In: Bethesda, MD Natl. Institutes Heal - PubMed
  24. Machado D, Palmeira-de-Oliveira A, Cerca N (2015) Optimization of culture conditions for Gardnerella vaginalis biofilm formation. J Microbiol Methods 118:143–146. https://doi.org/10.1016/j.mimet.2015.09.007 - PubMed
  25. Bragina A, Berg C, Cardinale M et al (2012) Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J 6:802–813. https://doi.org/10.1038/ismej.2011.151 - PubMed
  26. Mania-Pramanik J, Kerkar SC, Salvi VS (2009) Bacterial vaginosis: a cause of infertility? Int J STD AIDS 20:778–781. https://doi.org/10.1258/ijsa.2009.009193 - PubMed
  27. Ouarabi L, Drider D, Taminiau B et al (2020) Vaginal microbiota: age dynamic and ethnic particularities of Algerian women. Microb Ecol. https://doi.org/10.1007/s00248-020-01606-6 - PubMed
  28. Srinivasan S, Hoffman NG, Morgan MT et al (2012) Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 7:e37818. https://doi.org/10.1371/journal.pone.0037818 - PubMed
  29. Cerca N (2019) Could targeting neighboring bacterial populations help combat bacterial vaginosis? Future Microbiol 1–4. https://doi.org/10.2217/fmb-2019-0045 - PubMed
  30. Rosca AS, Castro J, Sousa LGV, Cerca N (2019) Gardnerella and vaginal health: the truth is out there. FEMS Microbiol Rev 44:73–105. https://doi.org/10.1093/femsre/fuz027 - PubMed
  31. Machado A, Salgueiro D, Harwich M et al (2013) Quantitative analysis of initial adhesion of bacterial vaginosis-associated anaerobes to ME-180 cells. Anaerobe 23:1–4. https://doi.org/10.1016/j.anaerobe.2013.07.007 - PubMed
  32. Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol 191:6804–6811. https://doi.org/10.1128/JB.01006-09 - PubMed
  33. Rath H, Feng D, Neuweiler I et al (2017) Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol Ecol 93:fix010. https://doi.org/10.1093/femsec/fix010 - PubMed
  34. Zilm PS, Rogers AH (2007) Co-adhesion and biofilm formation by Fusobacterium nucleatum in response to growth pH. Anaerobe 13:146–152. https://doi.org/10.1016/j.anaerobe.2007.04.005 - PubMed
  35. Chao Y, Marks LR, Pettigrew MM, Hakansson AP (2015) Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 4:1–16. https://doi.org/10.3389/fcimb.2014.00194 - PubMed
  36. Rickard AH, Gilbert P, High NJ et al (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100 - PubMed
  37. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210. https://doi.org/10.1038/nrmicro1838 - PubMed
  38. Lee KWK, Periasamy S, Mukherjee M et al (2014) Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 8:894–907. https://doi.org/10.1038/ismej.2013.194 - PubMed
  39. Magalhães AP, Lopes SP, Pereira MO (2017) Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics. Front Microbiol 7:1–11. https://doi.org/10.3389/fmicb.2016.02146 - PubMed
  40. Chan CL, Richter K, Wormald PJ et al (2017) Alloiococcus otitidis forms multispecies biofilm with Haemophilus influenzae: effects on antibiotic susceptibility and growth in adverse conditions. Front Cell Infect Microbiol 7:1–9. https://doi.org/10.3389/fcimb.2017.00344 - PubMed
  41. De Brucker K, Tan Y, Vints K et al (2015) Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother 59:3052–3058. https://doi.org/10.1128/AAC.04650-14 - PubMed
  42. Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922. https://doi.org/10.1128/AAC.00657-09 - PubMed
  43. Chen KCS, Forsyth PS, Buchanan TM, Holmes KK (1979) Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis. J Clin Invest 63:828–835. https://doi.org/10.1172/JCI109382 - PubMed
  44. Castro J, Rosca AS, Cools P et al (2020) Gardnerella vaginalis enhances Atopobium vaginae viability in an in vitro model. Front Cell Infect Microbiol 10:83. https://doi.org/10.3389/fcimb.2020.00083 - PubMed
  45. França A, Carvalhais V, Vilanova M et al (2016) Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms. AMB Express 6:23. https://doi.org/10.1186/s13568-016-0197-9 - PubMed
  46. Castro J, Alves P, Sousa C et al (2015) Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella vaginalis isolates. Sci Rep 5:11640. https://doi.org/10.1038/srep11640 - PubMed

Publication Types