Display options
Share it on

PLoS One. 2021 Oct 29;16(10):e0259124. doi: 10.1371/journal.pone.0259124. eCollection 2021.

Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow.

PloS one

Damian C Lettoof, Vicki A Thomson, Jari Cornelis, Philip W Bateman, Fabien Aubret, Marthe M Gagnon, Brenton von Takach

Affiliations

  1. Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
  2. School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
  3. Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France.
  4. School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
  5. Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.

PMID: 34714831 PMCID: PMC8555784 DOI: 10.1371/journal.pone.0259124

Abstract

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.

Conflict of interest statement

No authors have competing interests.

References

  1. Trends Ecol Evol. 2017 Jul;32(7):506-517 - PubMed
  2. R Soc Open Sci. 2017 Jul 19;4(7):161061 - PubMed
  3. Genetics. 1931 Mar;16(2):97-159 - PubMed
  4. Mol Ecol Resour. 2012 Nov;12(6):1158-60 - PubMed
  5. Nat Commun. 2021 Jan 22;12(1):516 - PubMed
  6. J Wildl Dis. 2021 Apr 1;57(2):253-263 - PubMed
  7. Environ Pollut. 2015 Jan;196:156-63 - PubMed
  8. Evol Appl. 2010 May;3(3):244-62 - PubMed
  9. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  10. Arch Environ Contam Toxicol. 2020 May;78(4):631-645 - PubMed
  11. Environ Pollut. 2019 Mar;246:174-182 - PubMed
  12. Philos Trans R Soc Lond B Biol Sci. 2021 Jun 7;376(1826):20200111 - PubMed
  13. Mol Ecol. 2021 May;30(10):2248-2261 - PubMed
  14. Trends Ecol Evol. 2009 Oct;24(10):564-71 - PubMed
  15. Arch Environ Contam Toxicol. 2002 Jan;42(1):60-70 - PubMed
  16. Bioessays. 2000 Dec;22(12):1057-66 - PubMed
  17. PLoS One. 2013;8(2):e56720 - PubMed
  18. J Urban Health. 2002 Dec;79(4 Suppl 1):S1-S12 - PubMed
  19. Environ Pollut. 2021 Apr 1;274:116547 - PubMed
  20. Mol Ecol. 2007 Jun;16(12):2474-87 - PubMed
  21. Proc Biol Sci. 2020 Mar 11;287(1922):20200195 - PubMed
  22. Anim Sci J. 2021 Jan;92(1):e13525 - PubMed
  23. Mol Ecol Resour. 2011 Mar;11 Suppl 1:184-94 - PubMed
  24. Mol Ecol. 2019 Sep;28(18):4138-4151 - PubMed
  25. PeerJ. 2014 Mar 04;2:e281 - PubMed
  26. Science. 2020 Feb 14;367(6479):814-816 - PubMed
  27. PLoS Genet. 2014 Aug 07;10(8):e1004412 - PubMed
  28. Sci Total Environ. 2020 Jul 1;724:138218 - PubMed
  29. J Exp Zool A Comp Exp Biol. 2005 Oct 1;303(10):894-903 - PubMed
  30. Mol Ecol Resour. 2016 Mar;16(2):540-8 - PubMed
  31. Trends Ecol Evol. 2016 Dec;31(12):940-952 - PubMed
  32. J Hered. 2019 Dec 17;110(7):818-829 - PubMed
  33. Mol Ecol. 2007 Jul;16(13):2693-700 - PubMed
  34. Mol Ecol. 2018 Oct;27(20):4121-4135 - PubMed
  35. Heredity (Edinb). 2012 Mar;108(3):167-78 - PubMed
  36. Heredity (Edinb). 1997 Mar;78 ( Pt 3):311-27 - PubMed
  37. Oecologia. 2002 May;131(3):418-426 - PubMed
  38. Ecol Evol. 2021 Feb 03;11(6):2775-2781 - PubMed
  39. Mol Ecol Resour. 2014 Jan;14(1):209-14 - PubMed
  40. Heredity (Edinb). 2015 Oct;115(4):349-56 - PubMed
  41. Mol Ecol. 2021 Jan;30(2):545-554 - PubMed
  42. Evol Appl. 2018 Dec 14;12(3):384-398 - PubMed
  43. Nat Ecol Evol. 2021 Apr;5(4):513-519 - PubMed
  44. Evol Appl. 2019 Jan 28;12(4):664-678 - PubMed
  45. BMC Genomics. 2014 Mar 28;15:246 - PubMed
  46. Am J Hum Genet. 2008 Jul;83(1):132-5; author reply 135-9 - PubMed
  47. Sci Total Environ. 2021 Feb 10;755(Pt 2):142545 - PubMed
  48. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8127-32 - PubMed
  49. Methods Mol Biol. 2012;888:67-89 - PubMed
  50. Sci Total Environ. 2006 May 1;360(1-3):196-204 - PubMed
  51. Mol Ecol Resour. 2013 Sep;13(5):946-52 - PubMed

Publication Types