Display options
Share it on

Magn Reson Med. 2021 Oct 17; doi: 10.1002/mrm.29053. Epub 2021 Oct 17.

Residual quadrupolar couplings observed in 7 Tesla deuterium MR spectra of skeletal muscle.

Magnetic resonance in medicine

Ayhan Gursan, Martijn Froeling, Arjan D Hendriks, Dimitri Welting, Arno P M Kentgens, Dennis W J Klomp, Jeanine J Prompers

Affiliations

  1. Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  2. Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.

PMID: 34657308 DOI: 10.1002/mrm.29053

Abstract

PURPOSE: Deuterium metabolic imaging could potentially be used to investigate metabolism in skeletal muscle noninvasively. However, skeletal muscle is a tissue with a high degree of spatial organization. In this study, we investigated the effect of incomplete motional averaging on the naturally abundant deuterated water signal in 7 Tesla deuterium spectra of the lower leg muscles and the dependence on the angle between the muscle fibers and the main magnetic field B

METHODS: Natural abundance deuterium MRSI measurements of the right lower leg muscles were performed at 7 Tesla. Three subjects were scanned in a supine position, with the right leg parallel with the B

RESULTS: We observed splittings in the natural abundance deuterated water signal. The size of the splittings varied between different muscles in the lower leg but were mostly similar among subjects for each muscle. The splittings depended on the orientation of the muscle fibers with respect to the main magnetic field B

CONCLUSION: Partial molecular alignment in skeletal muscle leads to residual deuteron quadrupolar couplings in deuterated water, the size of which depends on the angle between the muscle fibers and B

© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Keywords: deuterium MRS; deuterium metabolic imaging; muscle fiber angle; residual quadrupolar coupling; skeletal muscle

References

  1. De Feyter HM, Behar KL, Corbin ZA, et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci Adv. 2018;4:eaat7314. - PubMed
  2. Lu M, Zhu XH, Zhang Y, Mateescu G, Chen W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2017;37:3518-3530. - PubMed
  3. Kreis F, Wright AJ, Hesse F, Fala M, Hu DE, Brindle KM. Measuring tumor glycolytic flux in vivo by using fast deuterium MRI. Radiology. 2020;294:289-296. - PubMed
  4. Riis-Vestergaard MJ, Laustsen C, Mariager CØ, Schulte RF, Pedersen SB, Richelsen B. Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats. Int J Obes. 2020;44:1417-1427. - PubMed
  5. De Feyter HM, Thomas MA, Behar KL, de Graaf RA. NMR visibility of deuterium-labeled liver glycogen in vivo. Magn Reson Med. 2021;86:62-68. - PubMed
  6. Hesse F, Somai V, Kreis F, Bulat F, Wright AJ, Brindle KM. Monitoring tumor cell death in murine tumor models using deuterium magnetic resonance spectroscopy and spectroscopic imaging. Proc Natl Acad Sci USA. 2021;118:e2014631118. - PubMed
  7. von Morze C, Engelbach JA, Blazey T, et al. Comparison of hyperpolarized 13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T. Magn Reson Med. 2021;85:1795-1804. - PubMed
  8. Lebon V, Dufour S, Petersen KF, et al. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J Clin Invest. 2001;108:733-737. - PubMed
  9. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140-1142. - PubMed
  10. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664-671. - PubMed
  11. Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56:1376-1381. - PubMed
  12. Befroy DE, Petersen KF, Dufour S, Mason GF, Rothman DL, Shulman GI. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc Natl Acad Sci USA. 2008;105:16701-16706. - PubMed
  13. Graaf RA, Hendriks AD, Klomp DWJ, et al. On the magnetic field dependence of deuterium metabolic imaging. NMR Biomed. 2020;33:e4235. - PubMed
  14. Vermathen P, Boesch C, Kreis R. Mapping fiber orientation in human muscle by proton MR spectroscopic imaging. Magn Reson Med. 2003;49:424-432. - PubMed
  15. Boesch C, Kreis R. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR Biomed. 2001;14:140-148. - PubMed
  16. Kreis R, Boesch C. Liquid-crystal-like structures of human muscle demonstrated by in vivo observation of direct dipolar coupling in localized proton magnetic resonance spectroscopy. J Magn Reson Ser B. 1994;104:189-192. - PubMed
  17. Kreis R, Koster M, Kamber M, Hoppeler H, Boesch C. Peak assignment in localized 1H MR spectra of human muscle based on oral creatine supplementation. Magn Reson Med. 1997;37:159-163. - PubMed
  18. Kreis R, Boesch C. Spatially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Magn Reson B. 1996;113:103-118. - PubMed
  19. Hanstock CC, Thompson RB, Trump ME, Gheorghiu D, Hochachka PW, Allen PS. Residual dipolar coupling of the CR/PCr methyl resonance in resting human medial gastrocnemius muscle. Magn Reson Med. 1999;42:421-424. - PubMed
  20. Ntziachristos V, Kreis R, Boesch C, Quistorff B. Dipolar resonance frequency shifts in 1H MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes postmortem. Magn Reson Med. 1997;38:33-39. - PubMed
  21. in ’t Zandt HJ, Klomp DW, Oerlemans F, Wieringa B, Hilbers CW, Heerschap A. Proton MR spectroscopy of wild-type and creatine kinase deficient mouse skeletal muscle: dipole-dipole coupling effects and post-mortem changes. Magn Reson Med. 2000;43:517-524. - PubMed
  22. Asllani I, Shankland E, Pratum T, Kushmerick M. Anisotropic orientation of lactate in skeletal muscle observed by dipolar coupling in 1H NMR spectroscopy. J Magn Reson. 1999;139:213-224. - PubMed
  23. Struis RPWJ, De Bleijser J, Leyte JC. Dynamic behavior and some of the molecular properties of water molecules in pure water and in MgCl2 solutions. J Phys Chem. 1987;91:1639-1645. - PubMed
  24. Ludwig R, Weinhold F, Farrar TC. Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water. J Chem Phys. 1995;103:6941-6950. - PubMed
  25. Eliav U, Navon G. A study of dipolar interactions and dynamic processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multiple-quantum-filtered NMR spectroscopy. J Magn Reson. 1999;137:295-310. - PubMed
  26. Sharf Y, Eliav U, Shinar H, Navon G. Detection of anisotropy in cartilage using 2H double-quantum-filtered NMR-spectroscopy. J Magn Reson B. 1995;107:60-67. - PubMed
  27. Raaijmakers AJE, Italiaander M, Voogt IJ, et al. The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 2016;75:1366-1374. - PubMed
  28. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16:192-225. - PubMed
  29. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394-406. - PubMed
  30. Froeling M, Prompers JJ, Klomp DWJ, van der Velden TA. PCA denoising and Wiener deconvolution of 31P 3D CSI data to enhance effective SNR and improve point spread function. Magn Reson Med. 2021;85:2992-3009. - PubMed
  31. Vanhamme L, Van Den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129:35-43. - PubMed
  32. Froeling M. QMRTools: a Mathematica toolbox for quantitative MRI analysis. J Open Source Softw. 2019;4:1204. - PubMed
  33. De Luca A, Bertoldo A, Froeling M. Effects of perfusion on DTI and DKI estimates in the skeletal muscle. Magn Reson Med. 2017;78:233-246. - PubMed
  34. Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. Neuroimage. 2013;81:335-346. - PubMed
  35. Eliav U, Shinar H, Navon G. Identification of water compartments in spinal cords by 2H double quantum filtered NMR. NMR Biomed. 2021;34:e4452. - PubMed
  36. Schlaffke L, Rehmann R, Rohm M, et al. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR Biomed. 2019;32:e4119. - PubMed
  37. Rösler MB, Nagel AM, Umathum R, Bachert P, Benkhedah N. In vivo observation of quadrupolar splitting in 39K magnetic resonance spectroscopy of human muscle tissue. NMR Biomed. 2016;29:451-457. - PubMed

Publication Types

Grant support