Display options
Share it on

Cells. 2021 Oct 09;10(10). doi: 10.3390/cells10102711.

The SZT2 Interactome Unravels New Functions of the KICSTOR Complex.

Cells

Cecilia Cattelani, Dominik Lesiak, Gudrun Liebscher, Isabel I Singer, Taras Stasyk, Moritz H Wallnöfer, Alexander M Heberle, Corrado Corti, Michael W Hess, Kristian Pfaller, Marcel Kwiatkowski, Peter P Pramstaller, Andrew A Hicks, Kathrin Thedieck, Thomas Müller, Lukas A Huber, Mariana Eca Guimaraes de Araujo

Affiliations

  1. Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
  2. Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy.
  3. Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria.
  4. Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
  5. Institute of Histology and Embryology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
  6. Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany.
  7. Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria.
  8. Austrian Drug Screening Institute, ADSI, 6020 Innsbruck, Austria.

PMID: 34685691 PMCID: PMC8534408 DOI: 10.3390/cells10102711

Abstract

Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations.

Keywords: KICSTOR; SZT2; autophagy; ciliogenesis; epilepsy; mTORC1; neurodegeneration; neurogenesis

References

  1. EMBO J. 2012 Mar 7;31(5):1095-108 - PubMed
  2. Curr Opin Cell Biol. 2016 Apr;39:1-7 - PubMed
  3. Mol Cell. 2019 Jun 6;74(5):909-921.e6 - PubMed
  4. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14489-94 - PubMed
  5. PLoS One. 2012;7(10):e46647 - PubMed
  6. Science. 2013 May 31;340(6136):1100-6 - PubMed
  7. J Cell Biol. 2006 Apr 24;173(2):279-89 - PubMed
  8. Science. 2016 Jan 1;351(6268):53-8 - PubMed
  9. Cell. 2006 Oct 6;127(1):125-37 - PubMed
  10. Mol Genet Metab. 2016 Mar;117(3):313-21 - PubMed
  11. Cells. 2019 Jul 03;8(7): - PubMed
  12. Autophagy. 2008 Jan;4(1):63-6 - PubMed
  13. Bioinformatics. 2009 Apr 15;25(8):1091-3 - PubMed
  14. Nature. 2016 Aug 11;536(7615):229-33 - PubMed
  15. Cell. 2014 Feb 13;156(4):786-99 - PubMed
  16. Cell Death Dis. 2015 Jan 22;6:e1617 - PubMed
  17. Nature. 2015 Apr 23;520(7548):563-6 - PubMed
  18. Front Cell Neurosci. 2013 Apr 25;7:46 - PubMed
  19. Nat Cell Biol. 2008 Aug;10(8):935-45 - PubMed
  20. Am J Hum Genet. 2015 May 7;96(5):784-96 - PubMed
  21. Curr Biol. 2005 Apr 26;15(8):702-13 - PubMed
  22. Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):E9707-E9716 - PubMed
  23. Front Cell Dev Biol. 2020 Jan 21;7:373 - PubMed
  24. Nat Cell Biol. 2010 Nov;12(11):1115-22 - PubMed
  25. Traffic. 2009 Nov;10(11):1722-33 - PubMed
  26. J Biol Chem. 1998 May 15;273(20):12316-24 - PubMed
  27. Science. 1998 Jan 30;279(5351):707-10 - PubMed
  28. Nat Metab. 2020 Jan;2(1):41-49 - PubMed
  29. Mol Cell. 2008 Apr 25;30(2):214-26 - PubMed
  30. J Cell Biol. 2017 Dec 4;216(12):4199-4215 - PubMed
  31. Nat Cell Biol. 2011 Feb;13(2):132-41 - PubMed
  32. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  33. Nat Commun. 2021 Jul 12;12(1):4245 - PubMed
  34. Hum Mol Genet. 2014 Jul 15;23(14):3865-74 - PubMed
  35. Nature. 2017 Mar 16;543(7645):438-442 - PubMed
  36. J Cell Biol. 2017 Sep 4;216(9):2701-2713 - PubMed
  37. J Cell Biol. 2008 Mar 10;180(5):897-904 - PubMed
  38. J Biol Chem. 2012 Jun 1;287(23):19094-104 - PubMed
  39. Biochem J. 1995 Oct 15;311 ( Pt 2):385-92 - PubMed
  40. Nucleic Acids Res. 2008 Sep;36(15):4902-12 - PubMed
  41. Cells. 2021 May 03;10(5): - PubMed
  42. Epilepsia Open. 2016 Jul 21;1(1-2):37-44 - PubMed
  43. Science. 2011 Nov 4;334(6056):678-83 - PubMed
  44. Cell Cycle. 2010 Mar 1;9(5):953-7 - PubMed
  45. Anal Biochem. 1976 Jan;70(1):241-50 - PubMed
  46. Cell Rep. 2020 Jun 23;31(12):107780 - PubMed
  47. Free Radic Biol Med. 2010 Mar 15;48(6):811-20 - PubMed
  48. Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203 - PubMed
  49. Dev Cell. 2008 Aug;15(2):187-97 - PubMed
  50. Neuropharmacology. 1997 Sep;36(9):1181-7 - PubMed
  51. Nature. 2006 Jun 15;441(7095):880-4 - PubMed
  52. Nature. 2016 Aug 17;536(7616):285-91 - PubMed
  53. J Biol Chem. 2016 May 27;291(22):11689-97 - PubMed
  54. Nature. 2013 Jan 31;493(7434):679-83 - PubMed
  55. Nat Commun. 2016 Nov 21;7:13254 - PubMed
  56. Autophagy. 2012 Jun;8(6):903-14 - PubMed
  57. Nature. 2012 Dec 20;492(7429):382-6 - PubMed
  58. Science. 2008 Jun 13;320(5882):1496-501 - PubMed
  59. Nature. 2006 Jun 15;441(7095):885-9 - PubMed
  60. Curr Protoc Cell Biol. 2012 Dec;Chapter 4:Unit 4.26 - PubMed
  61. Mol Cell. 2019 Jun 6;74(5):891-908.e10 - PubMed
  62. Genes Dev. 2002 Jun 15;16(12):1472-87 - PubMed
  63. Methods Mol Biol. 2012;821:105-24 - PubMed
  64. Int J Mol Sci. 2020 Jan 16;21(2): - PubMed
  65. Bioinformatics. 2002 Jan;18(1):207-8 - PubMed
  66. Nature. 1997 Nov 6;390(6655):88-91 - PubMed
  67. Genes Cells. 2015 Jan;20(1):36-49 - PubMed
  68. Nat Chem Biol. 2019 Aug;15(8):776-785 - PubMed
  69. EMBO J. 2009 Mar 4;28(5):477-89 - PubMed
  70. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):949-56 - PubMed
  71. Elife. 2016 Oct 11;5: - PubMed
  72. BMC Cell Biol. 2013 Jan 12;14:3 - PubMed
  73. Dev Cell. 2016 Oct 10;39(1):13-27 - PubMed
  74. Epilepsia. 2017 Apr;58(4):512-521 - PubMed
  75. Cell. 2014 Feb 13;156(4):771-85 - PubMed
  76. Cancer Cell. 2014 Nov 10;26(5):601-3 - PubMed
  77. Nat Neurosci. 2012 Feb 05;15(3):399-405, S1 - PubMed
  78. Dev Cell. 2002 Dec;3(6):803-14 - PubMed
  79. Clin Case Rep. 2018 Oct 25;6(12):2376-2384 - PubMed
  80. J Cell Biol. 2006 Dec 18;175(6):861-8 - PubMed
  81. Science. 2018 May 18;360(6390):751-758 - PubMed
  82. Mol Cell Neurosci. 2006 May-Jun;32(1-2):37-48 - PubMed
  83. Cell. 2010 Apr 16;141(2):290-303 - PubMed
  84. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 - PubMed
  85. Exp Cell Res. 2008 Nov 15;314(19):3531-41 - PubMed
  86. J Cell Biol. 2001 Feb 19;152(4):765-76 - PubMed
  87. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17414-9 - PubMed
  88. Cell Metab. 2011 May 4;13(5):495-504 - PubMed
  89. Nat Rev Mol Cell Biol. 2005 Mar;6(3):233-47 - PubMed
  90. Genes Brain Behav. 2009 Jul;8(5):568-76 - PubMed
  91. Mol Cell. 2013 Nov 21;52(4):495-505 - PubMed
  92. J Cell Biol. 2001 Oct 15;155(2):279-89 - PubMed
  93. Cell. 2012 Dec 7;151(6):1256-69 - PubMed
  94. Science. 2017 Nov 10;358(6364):813-818 - PubMed
  95. Cell. 2003 Nov 26;115(5):577-90 - PubMed
  96. Nat Rev Nephrol. 2019 Apr;15(4):199-219 - PubMed
  97. Nat Cell Biol. 2013 Oct;15(10):1186-96 - PubMed
  98. Genes Dev. 2003 Aug 1;17(15):1829-34 - PubMed
  99. Cell Metab. 2020 Mar 3;31(3):472-492 - PubMed
  100. FASEB J. 2002 Jun;16(8):869-71 - PubMed
  101. J Biol Chem. 2001 Nov 30;276(48):44570-4 - PubMed
  102. Nature. 2015 Mar 26;519(7544):477-81 - PubMed
  103. EMBO J. 2018 May 15;37(10): - PubMed
  104. J Biol Chem. 1996 Jan 26;271(4):2082-7 - PubMed
  105. Annu Rev Pharmacol Toxicol. 2007;47:443-67 - PubMed
  106. J Cell Biol. 2014 Jul 21;206(2):173-82 - PubMed
  107. EMBO Mol Med. 2018 Nov;10(11): - PubMed
  108. Science. 2011 Jun 17;332(6036):1429-33 - PubMed
  109. Nat Neurosci. 2010 Jul;13(7):819-21 - PubMed
  110. Nature. 2013 Oct 10;502(7470):194-200 - PubMed
  111. Science. 1991 Aug 23;253(5022):905-9 - PubMed
  112. Cell Mol Life Sci. 2021 Feb;78(4):1369-1392 - PubMed
  113. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7 - PubMed
  114. Nucleic Acids Res. 2020 Jan 8;48(D1):D1145-D1152 - PubMed
  115. PLoS One. 2011;6(9):e24367 - PubMed
  116. Nat Cell Biol. 2003 Jun;5(6):578-81 - PubMed
  117. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11823-8 - PubMed
  118. Traffic. 2020 Jul;21(7):454-462 - PubMed
  119. Nat Rev Dis Primers. 2017 Sep 29;3:17065 - PubMed
  120. Nat Commun. 2019 May 3;10(1):2059 - PubMed
  121. Cells. 2019 Jul 10;8(7): - PubMed
  122. EXS. 2000;88:43-54 - PubMed
  123. Nature. 2017 Mar 16;543(7645):433-437 - PubMed
  124. Trends Cell Biol. 2014 Jul;24(7):400-6 - PubMed
  125. J Biol Chem. 1997 Oct 17;272(42):26457-63 - PubMed
  126. Genes Dev. 1999 Jun 1;13(11):1422-37 - PubMed
  127. Science. 2016 Jan 1;351(6268):43-8 - PubMed
  128. J Biol Chem. 2009 Mar 20;284(12):8023-32 - PubMed
  129. Mol Biol Cell. 2009 Apr;20(7):1981-91 - PubMed
  130. Neuron. 2018 Jul 11;99(1):83-97.e7 - PubMed
  131. Nature. 2013 Oct 10;502(7470):254-7 - PubMed
  132. Science. 2013 Jul 26;341(6144):1236566 - PubMed
  133. J Biol Chem. 2009 May 8;284(19):12783-91 - PubMed

Publication Types

Grant support