Display options
Share it on

MAbs. 2021 Jan-Dec;13(1):1981202. doi: 10.1080/19420862.2021.1981202.

Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer.

mAbs

Hong Xiang, Abigael G Chan, Ago Ahene, David I Bellovin, Rong Deng, Amy W Hsu, Ursula Jeffry, Servando Palencia, Janine Powers, James Zanghi, Helen Collins

Affiliations

  1. Five Prime Therapeutics, Inc, South San Francisco, California.
  2. Clinical Pharmacology, Modeling and Simulation, Amgen Inc, Thousand Oaks, California.
  3. Global Project Management, Zai Lab (US) LLC, Menlo Park, California.
  4. Bioanalytic Sciences, Amgen Inc, South San Francisco, California.
  5. R&D Q-Pharm Consulting LLC, Pleasanton.
  6. Research, Merck & Co., Inc, South San Francisco, California.
  7. Toxicology Department, NGM Biopharmaceuticals, Inc, San Francisco, California.
  8. Research, Teva Pharmaceuticals, Redwood city, California.
  9. Translational Medicine, Nurix Therapeutics, San Francisco, California.
  10. Bioanalytic Sciences, Genentech Inc., South San Francisco, California.
  11. Clinic, Amgen Inc., South San Francisco, California.

PMID: 34719330 PMCID: PMC8565817 DOI: 10.1080/19420862.2021.1981202

Abstract

Bemarituzumab (FPA144) is a first-in-class, humanized, afucosylated immunoglobulin G1 monoclonal antibody (mAb) directed against fibroblast growth factor receptor 2b (FGFR2b) with two mechanisms of action against FGFR2b-overexpressing tumors: inhibition of FGFR2b signaling and enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). Bemarituzumab is being developed as a cancer therapeutic, and we summarize here the key nonclinical data that supported moving it into clinical trials. Bemarituzumab displayed sub-nanomolar cross-species affinity for FGFR2b receptors, with >20-fold enhanced binding affinity to human Fc gamma receptor IIIa compared with the fucosylated version. In vitro, bemarituzumab induced potent ADCC against FGFR2b-expressing tumor cells, and inhibited FGFR2 phosphorylation and proliferation of SNU-16 gastric cancer cells in a concentration-dependent manner. In vivo, bemarituzumab inhibited tumor growth through inhibition of the FGFR2b pathway and/or ADCC in mouse models. Bemarituzumab demonstrated enhanced anti-tumor activity in combination with chemotherapy, and due to bemarituzumab-induced natural killer cell-dependent increase in programmed death-ligand 1, also resulted in enhanced anti-tumor activity when combined with an anti-programmed death-1 antibody. Repeat-dose toxicity studies established the highest non-severely-toxic dose at 1 and 100 mg/kg in rats and cynomolgus monkeys, respectively. In pharmacokinetic (PK) studies, bemarituzumab exposure increase was greater than dose-proportional, with the linear clearance in the expected dose range for a mAb. The PK data in cynomolgus monkeys were used to project bemarituzumab linear PK in humans, which were consistent with the observed human Phase 1 data. These key nonclinical studies facilitated the successful advancement of bemarituzumab into the clinic.

Keywords: Bemarituzumab; afucosylated antibody; antibody-dependent cell-mediated cytoxicity; phosphorylation in vitro; anti-FGFR2b antibody; anti-tumor efficacy; cell proliferation in vitro; fibroblast growth factor receptor; pharmacokinetics; toxicology

References

  1. Clin Cancer Res. 1996 Aug;2(8):1373-81 - PubMed
  2. PLoS One. 2015 Nov 20;10(11):e0143207 - PubMed
  3. Ann Oncol. 2016 Sep;27(suppl 5):v38-v49 - PubMed
  4. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):246-50 - PubMed
  5. Dev Biol. 2008 May 1;317(1):121-31 - PubMed
  6. Wiley Interdiscip Rev Dev Biol. 2015 May-Jun;4(3):215-66 - PubMed
  7. Clin Cancer Res. 2010 Dec 1;16(23):5750-8 - PubMed
  8. MAbs. 2018 Jul;10(5):751-764 - PubMed
  9. Biopharm Drug Dispos. 2010 May;31(4):253-63 - PubMed
  10. Dev Dyn. 2009 Feb;238(2):324-30 - PubMed
  11. Gut. 2012 May;61(5):673-84 - PubMed
  12. Cancer Discov. 2013 Jun;3(6):636-47 - PubMed
  13. MAbs. 2018 Jul;10(5):693-711 - PubMed
  14. J Clin Pharmacol. 2009 Dec;49(12):1382-402 - PubMed
  15. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5983-7 - PubMed
  16. Curr Cancer Drug Targets. 2009 Aug;9(5):639-51 - PubMed
  17. Cancer Chemother Pharmacol. 2020 Nov;86(5):595-606 - PubMed
  18. Dev Biol. 1993 Aug;158(2):475-86 - PubMed
  19. J Clin Oncol. 2020 Jul 20;38(21):2418-2426 - PubMed
  20. Hum Pathol. 2012 Oct;43(10):1559-66 - PubMed
  21. Br J Cancer. 2014 Feb 18;110(4):967-75 - PubMed
  22. Development. 2010 Nov;137(22):3743-52 - PubMed
  23. Br J Cancer. 2012 Feb 14;106(4):727-32 - PubMed
  24. Oncotarget. 2017 May 16;8(20):33844-33854 - PubMed
  25. Ocul Surf. 2008 Jan;6(1):9-23 - PubMed
  26. MAbs. 2013 Nov-Dec;5(6):896-903 - PubMed
  27. Oncogene. 2010 Apr 8;29(14):2013-23 - PubMed
  28. PLoS One. 2015 Jan 23;10(1):e0117089 - PubMed
  29. Nat Rev Cancer. 2010 Feb;10(2):116-29 - PubMed
  30. Clin Pharmacokinet. 2010 Oct;49(10):633-59 - PubMed
  31. Oncogene. 2001 Sep 13;20(41):5878-87 - PubMed
  32. J Pathol. 2004 Sep;204(1):110-8 - PubMed
  33. MAbs. 2012 Nov-Dec;4(6):724-31 - PubMed
  34. Toxicol Pathol. 2010 Feb;38(2):267-79 - PubMed
  35. MAbs. 2011 Jan-Feb;3(1):61-6 - PubMed

Publication Types