Display options
Share it on

Mol Brain. 2021 Nov 08;14(1):163. doi: 10.1186/s13041-021-00874-8.

Olig2-astrocytes express neutral amino acid transporter SLC7A10 (Asc-1) in the adult brain.

Molecular brain

Kouko Tatsumi, Kaoru Kinugawa, Ayami Isonishi, Masahiro Kitabatake, Hiroaki Okuda, Shoko Takemura, Tatsuhide Tanaka, Eiichiro Mori, Akio Wanaka

Affiliations

  1. Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan. [email protected].
  2. Department of Neurology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
  3. Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
  4. Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
  5. Department of Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
  6. Department of Future Basic Medicine, Faculty of Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan.

PMID: 34749773 PMCID: PMC8573876 DOI: 10.1186/s13041-021-00874-8

Abstract

We have reported that the transcription factor Olig2 labels a subpopulation of astrocytes (Olig2-astrocytes), which show distribution patterns different from those of GFAP-expressing astrocytes (GFAP-astrocytes) in the adult brain. Here, to uncover the specific functions of Olig2-astrocytes, we first analyzed public single-cell RNA-seq databases of adult mouse brains. Unbiased classification of gene expression profiles and subsequent gene ontology analyses revealed that the majority of Olig2-astrocytes belonged to an astrocytic cluster that is enriched for transporter-related genes. SLC7A10 (also known as ASC-1) was one of the representative neutral amino acid transporter genes in the cluster. To complement the in silico data analyses, we differentially isolated Olig2- and GFAP-astrocytes from the same frozen section of the lateral globus pallidus using laser microdissection and compared their gene expression by quantitative reverse transcription PCR. We confirmed that Olig2 and GFAP mRNAs were preferentially expressed in the Olig2- and GFAP-astrocytes, respectively, indicating that the laser microdissection method yielded minimal cross-contamination between two types of cells. The Olig2-astrocytes expressed significantly higher levels of SLC7A10 mRNA than the GFAP-astrocytes, corroborating the in silico data. We next localized SLC7A10 protein by immunohistochemistry in the lateral globus pallidus, which was also genetically labeled for Olig2. SLC7A10 co-localized with Olig2-genetic labeling, especially on the fine processes of Olig2-astrocytes. These results are consistent with the recent discovery that SLC7A10 is expressed not only in neurons but also in a subset of astrocytes. Taken together, our findings suggest that SLC7A10 exerts specific functions in Olig2-astrocytes of the adult brain.

© 2021. The Author(s).

References

  1. Curr Biol. 2002 Jul 9;12(13):1157-63 - PubMed
  2. Mol Cells. 2009 Apr 30;27(4):397-401 - PubMed
  3. Nat Protoc. 2009;4(1):44-57 - PubMed
  4. Sci Rep. 2019 Mar 20;9(1):4836 - PubMed
  5. Brain. 2010 Oct;133(10):3069-79 - PubMed
  6. Nat Neurosci. 2017 Mar;20(3):396-405 - PubMed
  7. Science. 2016 Aug 26;353(6302):925-8 - PubMed
  8. Front Cell Neurosci. 2016 Jun 21;10:165 - PubMed
  9. Nat Med. 2017 Jul;23(7):818-828 - PubMed
  10. Nat Biotechnol. 2015 May;33(5):495-502 - PubMed
  11. Front Neuroanat. 2018 Feb 14;12:8 - PubMed
  12. J Neurosci Res. 2008 Dec;86(16):3494-502 - PubMed
  13. Neuron. 2001 Sep 13;31(5):791-807 - PubMed
  14. Eur J Neurosci. 2011 Apr;33(8):1504-18 - PubMed
  15. Sci Rep. 2016 Oct 19;6:35592 - PubMed
  16. Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20736-20742 - PubMed
  17. Cell. 2015 May 21;161(5):1202-1214 - PubMed
  18. Eur J Neurosci. 2003 Oct;18(8):2227-38 - PubMed
  19. Brain Struct Funct. 2013 Sep;218(5):1159-76 - PubMed
  20. J Neurosci. 2012 May 2;32(18):6391-410 - PubMed
  21. Neurochem Int. 2009 Mar-Apr;54(3-4):192-8 - PubMed
  22. Nat Neurosci. 2019 Oct;22(10):1696-1708 - PubMed
  23. Mov Disord. 2015 Mar;30(3):293-5 - PubMed
  24. Methods Mol Biol. 2020;2092:159-186 - PubMed
  25. EMBO Rep. 2015 May;16(5):590-8 - PubMed
  26. Nat Neurosci. 2019 May;22(5):741-752 - PubMed
  27. Front Cell Neurosci. 2018 May 24;12:141 - PubMed
  28. J Neurosci. 2017 Apr 26;37(17):4493-4507 - PubMed
  29. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  30. Mol Brain. 2021 Feb 17;14(1):36 - PubMed
  31. Exp Mol Med. 2018 Aug 7;50(8):1-14 - PubMed
  32. Nat Commun. 2013;4:2196 - PubMed
  33. J Neurosci Res. 2009 Dec;87(16):3546-53 - PubMed
  34. Sci Rep. 2018 Jun 4;8(1):8536 - PubMed
  35. Nature. 2018 Oct;562(7727):367-372 - PubMed
  36. Nat Protoc. 2018 Apr;13(4):599-604 - PubMed
  37. J Biol Chem. 2000 Mar 31;275(13):9690-8 - PubMed
  38. Stem Cell Reports. 2019 Feb 12;12(2):290-304 - PubMed
  39. Genome Biol. 2015 Dec 10;16:278 - PubMed

Publication Types