Display options
Share it on

Cell Mol Life Sci. 2021 Dec;78(23):7851-7872. doi: 10.1007/s00018-021-03977-6. Epub 2021 Nov 01.

Vascular adhesion protein-1 defines a unique subpopulation of human hematopoietic stem cells and regulates their proliferation.

Cellular and molecular life sciences : CMLS

Imtiaz Iftakhar-E-Khuda, Alberto Pessia, Shuyu Zheng, Matti Kankainen, Mika Kontro, Marika Karikoski, Juha Laurila, Heidi Gerke, Sina Tadayon, Maija Hollmén, Jing Tang, Beat A Imhof, Marko Salmi, Sirpa Jalkanen

Affiliations

  1. Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.
  2. Research Program in Systems Oncology (ONCOSYS), Faculty of Medicine, University of Helsinki, Helsinki, Finland.
  3. Department of Hematology, Helsinki University Hospital, Helsinki, Finland.
  4. Department of Pathology and Immunology, Centre Médical Universitaire (CMU), University of Geneva, Rue Michel-Servet 1, CH-1211, Geneva, Switzerland.
  5. Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. [email protected].

PMID: 34719737 DOI: 10.1007/s00018-021-03977-6

Abstract

Although the development of hematopoietic stem cells (HSC) has been studied in great detail, their heterogeneity and relationships to different cell lineages remain incompletely understood. Moreover, the role of Vascular Adhesion Protein-1 in bone marrow hematopoiesis has remained unknown. Here we show that VAP-1, an adhesin and a primary amine oxidase producing hydrogen peroxide, is expressed on a subset of human HSC and bone marrow vasculature forming a hematogenic niche. Bulk and single-cell RNAseq analyses reveal that VAP-1

© 2021. The Author(s).

Keywords: Amine oxidase; Hematopoiesis; Oxygen radicals; Stem cells; Transplantation

References

  1. Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553. https://doi.org/10.1182/blood-2008-08-078220 - PubMed
  2. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613. https://doi.org/10.1182/blood-2014-12-570200 - PubMed
  3. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. https://doi.org/10.1038/nature12984 - PubMed
  4. Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122(4):491–498. https://doi.org/10.1182/blood-2013-02-453175 - PubMed
  5. Russell NH, Hunter A, Rogers S, Hanley J, Anderson D (1993) Peripheral blood stem cells as an alternative to marrow for allogeneic transplantation. Lancet 341(8858):1482. https://doi.org/10.1016/0140-6736(93)90929-b - PubMed
  6. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136. https://doi.org/10.1016/j.stem.2012.01.006 - PubMed
  7. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1(6):635–645. https://doi.org/10.1016/j.stem.2007.10.001 - PubMed
  8. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM (2020) Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. https://doi.org/10.1126/science.aaw3381 - PubMed
  9. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ et al (2018) Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173(6):1535–48.e16. https://doi.org/10.1016/j.cell.2018.03.074 - PubMed
  10. Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK et al (2019) A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun 10(1):2395. https://doi.org/10.1038/s41467-019-10291-0 - PubMed
  11. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333(6039):218–221. https://doi.org/10.1126/science.1201219 - PubMed
  12. Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M et al (2018) Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol 19(1):85–97. https://doi.org/10.1038/s41590-017-0001-2 - PubMed
  13. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281. https://doi.org/10.1038/ncb3493 - PubMed
  14. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783 - PubMed
  15. Yu VWC, Yusuf RZ, Oki T, Wu J, Saez B, Wang X et al (2016) Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167(5):1310–22.e17. https://doi.org/10.1016/j.cell.2016.10.045 - PubMed
  16. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Scienc. https://doi.org/10.1126/science.aab2116 - PubMed
  17. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144(2):296–309. https://doi.org/10.1016/j.cell.2011.01.004 - PubMed
  18. Salmi M, Yegutkin G, Lehvonen R, Koskinen K, Salminen T, Jalkanen S (2001) A cell surface amine oxidase directly controls lymphocyte migration. Immunity 14(3):265–276. https://doi.org/10.1016/s1074-7613(01)00108-x   - PubMed
  19. Salmi M, Jalkanen S (2019) Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid Redox Signal 30(3):314–332. https://doi.org/10.1089/ars.2017.7418 - PubMed
  20. Testa U, Labbaye C, Castelli G, Pelosi E (2016) Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol 44(7):540–560. https://doi.org/10.1016/j.exphem.2016.04.012 - PubMed
  21. Urao N, Ushio-Fukai M (2013) Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 54:26–39. https://doi.org/10.1016/j.freeradbiomed.2012.10.532 - PubMed
  22. Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H, Uno T et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950. https://doi.org/10.1182/blood-2011-01-330050 - PubMed
  23. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002. https://doi.org/10.1038/nature02989 - PubMed
  24. Stolen CM, Marttila-Ichihara F, Koskinen K, Yegutkin GG, Turja R, Bono P et al (2005) Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22(1):105–115. https://doi.org/10.1016/j.immuni.2004.12.006 - PubMed
  25. Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW et al (2015) Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 125(2):501–520. https://doi.org/10.1172/JCI73722 - PubMed
  26. Miller PH, Rabu G, MacAldaz M, Knapp DJ, Cheung AM, Dhillon K et al (2017) Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp Hematol 48:41–49. https://doi.org/10.1016/j.exphem.2016.12.012 - PubMed
  27. Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ et al (2011) Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood 118(13):3725–3733. https://doi.org/10.1182/blood-2010-09-311076 - PubMed
  28. Kumar A, Kankainen M, Parsons A, Kallioniemi O, Mattila P, Heckman CA (2017) The impact of RNA sequence library construction protocols on transcriptomic profiling of leukemia. BMC Genomics 18(1):629. https://doi.org/10.1186/s12864-017-4039-1 - PubMed
  29. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170 - PubMed
  30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 - PubMed
  31. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8):e47. https://doi.org/10.1093/nar/gkz114 - PubMed
  32. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C et al (2012) RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28(11):1530–1532. https://doi.org/10.1093/bioinformatics/bts196 - PubMed
  33. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25 - PubMed
  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102 - PubMed
  35. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096 - PubMed
  36. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. https://doi.org/10.1038/nbt.2859 - PubMed
  37. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6 - PubMed
  38. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282):189–196. https://doi.org/10.1126/science.aad0501 - PubMed
  39. Zeng Y, He J, Bai Z, Li Z, Gong Y, Liu C et al (2019) Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29(11):881–894. https://doi.org/10.1038/s41422-019-0228-6 - PubMed
  40. O’Rourke AM, Wang EY, Miller A, Podar EM, Scheyhing K, Huang L et al (2008) Anti-inflammatory effects of LJP 1586 [Z-3-fluoro-2-(4-methoxybenzyl)allylamine hydrochloride], an amine-based inhibitor of semicarbazide-sensitive amine oxidase activity. J Pharmacol Exp Ther 324(2):867–875 - PubMed
  41. Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J (2011) Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab 31(3):881–893. https://doi.org/10.1038/jcbfm.2010.167 - PubMed
  42. Xu HL, Garcia M, Testai F, Vetri F, Barabanova A, Pelligrino DA et al (2014) Pharmacologic blockade of vascular adhesion protein-1 lessens neurologic dysfunction in rats subjected to subarachnoid hemorrhage. Brain Res 1586:83–89. https://doi.org/10.1016/j.brainres.2014.08.036 - PubMed
  43. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007 - PubMed
  44. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616 - PubMed
  45. Chen Y, Lun AT, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5:1438. https://doi.org/10.12688/f1000research.8987.2 . - PubMed
  46. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24(12):1461–1462. https://doi.org/10.1093/bioinformatics/btn209 - PubMed
  47. Zheng S, Papalexi E, Butler A, Stephenson W, Satija R (2018) Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol Syst Biol 14(3):e8041. https://doi.org/10.15252/msb.20178041 - PubMed
  48. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093. https://doi.org/10.1038/nm.2415 - PubMed
  49. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44(D1):D380–D384. https://doi.org/10.1093/nar/gkv1277 - PubMed
  50. Calvanese V, Nguyen AT, Bolan TJ, Vavilina A, Su T, Lee LK et al (2019) MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576(7786):281–286. https://doi.org/10.1038/s41586-019-1790-2 - PubMed
  51. Knapp DJHF, Hammond CA, Hui T, van Loenhout MTJ, Wang F, Aghaeepour N et al (2018) Single-cell analysis identifies a CD33. Nat Cell Biol 20(6):710–720. https://doi.org/10.1038/s41556-018-0104-5 - PubMed
  52. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS et al (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530(7589):223–227. https://doi.org/10.1038/nature16943 - PubMed
  53. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y et al (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1(6):2979–2987. https://doi.org/10.1038/nprot.2006.447 - PubMed
  54. Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al (2014) Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 345(6203):1509–1512. https://doi.org/10.1126/science.1256337 - PubMed
  55. Bofill M, Janossy G, Janossa M, Burford GD, Seymour GJ, Wernet P, et al (1985) Human B cell development. II. Subpopulations in the human fetus. J Immunol1 34(3):1531–1538 - PubMed
  56. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121. https://doi.org/10.1016/j.cell.2005.05.026 - PubMed
  57. Woehrer S, Miller CL, Eaves CJ (2013) Long-term culture-initiating cell assay for mouse cells. Methods Mol Biol 946:257–266. https://doi.org/10.1007/978-1-62703-128-8_16 - PubMed
  58. Frisch BJ, Calvi LM (2014) Hematopoietic stem cell cultures and assays. Methods Mol Biol 1130:315–324. https://doi.org/10.1007/978-1-62703-989-5_24 - PubMed
  59. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL et al (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126. https://doi.org/10.1016/j.cell.2013.08.007 - PubMed
  60. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116. https://doi.org/10.1016/j.stem.2013.05.014 - PubMed
  61. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546. https://doi.org/10.1073/pnas.261562798 - PubMed
  62. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. https://doi.org/10.1016/j.cell.2008.10.048 - PubMed
  63. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB et al (2017) Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 169(5):807–23.e19. https://doi.org/10.1016/j.cell.2017.04.018 - PubMed
  64. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063. https://doi.org/10.1182/blood-2007-05-087759 - PubMed
  65. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038. https://doi.org/10.1182/blood-2009-09-241000 - PubMed
  66. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451. https://doi.org/10.1038/nm1388 - PubMed
  67. Piccoli C, D’Aprile A, Ripoli M, Scrima R, Lecce L, Boffoli D et al (2007) Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun 353(4):965–972. https://doi.org/10.1016/j.bbrc.2006.12.148 - PubMed
  68. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547. https://doi.org/10.1016/1074-7613(95)90125-6 - PubMed
  69. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034. https://doi.org/10.1084/jem.192.7.1027 - PubMed
  70. Kivi E, Elima K, Aalto K, Nymalm Y, Auvinen K, Koivunen E et al (2009) Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood 114(26):5385–5392. https://doi.org/10.1182/blood-2009-04-219253 - PubMed
  71. Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 17(9):573–590. https://doi.org/10.1038/nri.2017.53   - PubMed
  72. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3):263–274. https://doi.org/10.1016/j.stem.2009.01.006 - PubMed
  73. Chen Q, Liu Y, Jeong HW, Stehling M, Dinh VV, Zhou B et al (2019) Apelin+ Endothelial Niche cells control hematopoiesis and mediate vascular regeneration after myeloablative injury. Cell Stem Cell 25(6):768–83.e6. https://doi.org/10.1016/j.stem.2019.10.006 - PubMed

Publication Types