Display options
Share it on

Cell Death Dis. 2021 Nov 08;12(11):1061. doi: 10.1038/s41419-021-04353-9.

Cooperative miRNA-dependent PTEN regulation drives resistance to BTK inhibition in B-cell lymphoid malignancies.

Cell death & disease

Isha Kapoor, Juraj Bodo, Brian T Hill, Alexandru Almasan

Affiliations

  1. Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, USA.
  2. Department of Laboratory Medicine, Institute of Pathology and Laboratory Medicine, Cleveland, OH, USA.
  3. Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland, OH, USA.
  4. Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, USA. [email protected].
  5. Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. [email protected].

PMID: 34750354 PMCID: PMC8575967 DOI: 10.1038/s41419-021-04353-9

Abstract

Aberrant microRNA (miR) expression plays an important role in pathogenesis of different types of cancers, including B-cell lymphoid malignancies and in the development of chemo-sensitivity or -resistance in chronic lymphocytic leukemia (CLL) as well as diffuse large B-cell lymphoma (DLBCL). Ibrutinib is a first-in class, oral, covalent Bruton's tyrosine kinase (BTK) inhibitor (BTKi) that has shown impressive clinical activity, yet many ibrutinib-treated patients relapse or develop resistance over time. We have reported that acquired resistance to ibrutinib is associated with downregulation of tumor suppressor protein PTEN and activation of the PI3K/AKT pathway. Yet how PTEN mediates chemoresistance in B-cell malignancies is not clear. We now show that the BTKi ibrutinib and a second-generation compound, acalabrutinib downregulate miRNAs located in the 14q32 miRNA cluster region, including miR-494, miR-495, and miR-543. BTKi-resistant CLL and DLBCL cells had striking overexpression of miR-494, miR-495, miR-543, and reduced PTEN expression, indicating further regulation of the PI3K/AKT/mTOR pathway in acquired BTKi resistance. Additionally, unlike ibrutinib-sensitive CLL patient samples, those with resistance to ibrutinib treatment, demonstrated upregulation of 14q32 cluster miRNAs, including miR-494, miR-495, and miR-543 and decreased pten mRNA expression. Luciferase reporter gene assay showed that miR-494 directly targeted and suppressed PTEN expression by recognizing two conserved binding sites in the PTEN 3'-UTR, and subsequently activated AKT

© 2021. The Author(s).

References

  1. Blood Cancer J. 2020 Dec 4;10(12):123 - PubMed
  2. Clin Cancer Res. 2017 Jul 15;23(14):3734-3743 - PubMed
  3. Nat Rev Clin Oncol. 2019 Nov;16(11):684-701 - PubMed
  4. Exp Hematol. 2021 Aug 30;: - PubMed
  5. Clin Exp Metastasis. 2020 Feb;37(1):31-46 - PubMed
  6. N Engl J Med. 2013 Jul 4;369(1):32-42 - PubMed
  7. Oncogene. 2016 Aug 4;35(31):4080-90 - PubMed
  8. Biosci Rep. 2019 Mar 22;39(3): - PubMed
  9. Clin Lymphoma Myeloma Leuk. 2021 Mar;21(3):176-181 - PubMed
  10. Leuk Lymphoma. 2013 Aug;54(8):1836-9 - PubMed
  11. Mol Cancer Res. 2014 Sep;12(9):1205-15 - PubMed
  12. Cell Death Dis. 2018 Jan 5;9(1):4 - PubMed
  13. J Clin Oncol. 2021 Nov 1;39(31):3441-3452 - PubMed
  14. Lancet. 2021 Jul 10;398(10295):131-142 - PubMed
  15. Oncotarget. 2017 Mar 28;8(13):22262-22278 - PubMed
  16. Front Oncol. 2020 Nov 12;10:513601 - PubMed
  17. Semin Hematol. 2015 Apr;52(2):77-85 - PubMed
  18. Mol Cancer. 2015 Nov 04;14:185 - PubMed
  19. Blood Cancer J. 2017 May 26;7(5):e565 - PubMed
  20. Mol Cancer Res. 2018 Mar;16(3):390-402 - PubMed
  21. Biochem Biophys Res Commun. 2017 Feb 5;483(2):867-873 - PubMed
  22. Int J Oncol. 2014 Dec;45(6):2486-94 - PubMed
  23. Blood. 2018 Apr 26;131(17):1910-1919 - PubMed
  24. Cancers (Basel). 2021 Mar 16;13(6): - PubMed
  25. Blood. 2015 Mar 5;125(10):1676-8 - PubMed
  26. Sci Rep. 2019 Feb 28;9(1):3008 - PubMed
  27. Nat Med. 2015 Aug;21(8):922-6 - PubMed
  28. Cell Death Dis. 2015 Jan 15;6:e1593 - PubMed
  29. Blood. 2014 Mar 27;123(13):2066-74 - PubMed
  30. Nat Rev Clin Oncol. 2020 Jul;17(7):390 - PubMed
  31. Blood Adv. 2019 Jan 22;3(2):132-135 - PubMed
  32. Cancer Res. 2015 Aug 15;75(16):3411-24 - PubMed
  33. Leukemia. 2021 May;35(5):1317-1329 - PubMed
  34. Leuk Res. 2013 Nov;37(11):1420-8 - PubMed
  35. Blood Adv. 2019 May 14;3(9):1553-1562 - PubMed
  36. Nucleic Acids Res. 2020 Jan 8;48(D1):D127-D131 - PubMed
  37. Biomed Pharmacother. 2017 Dec;96:974-981 - PubMed
  38. Cancer Res. 2019 Feb 1;79(3):650-662 - PubMed
  39. Nat Commun. 2017 Apr 18;8:14920 - PubMed
  40. Nat Rev Cancer. 2010 Jan;10(1):37-50 - PubMed
  41. J Cancer. 2019 Oct 15;10(24):6037-6047 - PubMed
  42. Mol Med Rep. 2016 Jun;13(6):4827-34 - PubMed
  43. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16570-5 - PubMed
  44. Am J Pathol. 2017 Aug;187(8):1700-1716 - PubMed
  45. Blood. 2017 Oct 5;130(14):1676-1679 - PubMed
  46. Cancer Res. 2012 Aug 1;72(15):3775-85 - PubMed
  47. Cell Death Dis. 2019 Dec 4;10(12):924 - PubMed
  48. J Clin Oncol. 2020 Feb 10;38(5):423-433 - PubMed
  49. Int J Clin Exp Pathol. 2015 Nov 01;8(11):14875-84 - PubMed
  50. Neoplasia. 2018 Jun;20(6):574-593 - PubMed
  51. Cancers (Basel). 2020 May 22;12(5): - PubMed
  52. Onco Targets Ther. 2021 Feb 09;14:891-904 - PubMed
  53. Blood. 2021 Jun 17;137(24):3313-3314 - PubMed
  54. Mol Med Rep. 2019 Jan;19(1):581-588 - PubMed
  55. Genome Biol. 2019 Jan 22;20(1):18 - PubMed
  56. Oncotarget. 2017 Feb 7;8(6):9597-9607 - PubMed

Publication Types

Grant support