Display options
Share it on

Mol Neurobiol. 2021 Oct 22; doi: 10.1007/s12035-021-02585-6. Epub 2021 Oct 22.

Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke.

Molecular neurobiology

Inês Mollet, João Pedro Marto, Marcelo Mendonça, Miguel Viana Baptista, Helena L A Vieira

Affiliations

  1. UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.
  2. CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.
  3. Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.
  4. Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal.
  5. UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. [email protected].
  6. CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. [email protected].
  7. Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal. [email protected].

PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6

Abstract

Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Hormesis; Ischemic stroke; Neuroinflammation; Neuroprotection; Oxidative stress; Remote ischemic conditioning

References

  1. Brain Res. 2020 Aug 1;1740:146860 - PubMed
  2. Sleep. 2016 Nov 01;39(11):2033-2040 - PubMed
  3. Int J Neurosci. 2016 Jun;126(6):552-559 - PubMed
  4. BMC Neurosci. 2015 Dec 29;16:97 - PubMed
  5. Prog Neurobiol. 2014 Mar;114:58-83 - PubMed
  6. Neurosurgery. 2014 Nov;75(5):590-8; discussion 598 - PubMed
  7. Transl Stroke Res. 2015 Jun;6(3):198-206 - PubMed
  8. Brain Res. 2006 Apr 21;1084(1):165-74 - PubMed
  9. J Mot Behav. 2017 May-Jun;49(3):337-348 - PubMed
  10. PLoS One. 2012;7(11):e48284 - PubMed
  11. Brain Res. 2009 Sep 8;1288:88-94 - PubMed
  12. J Neuroinflammation. 2019 Jul 10;16(1):142 - PubMed
  13. BMC Surg. 2011 Nov 23;11:32 - PubMed
  14. J Stroke Cerebrovasc Dis. 2018 Apr;27(4):831-838 - PubMed
  15. Circulation. 1986 Nov;74(5):1124-36 - PubMed
  16. Nat Neurosci. 2011 Oct 26;14(11):1363-8 - PubMed
  17. J Neurosurg Anesthesiol. 2010 Jan;22(1):46-52 - PubMed
  18. Trends Neurosci. 2009 Jan;32(1):48-55 - PubMed
  19. Heart Lung Circ. 2021 Apr;30(4):531-539 - PubMed
  20. Drug Des Devel Ther. 2014 Aug 27;8:1175-81 - PubMed
  21. J Cell Physiol. 2019 Aug;234(8):12637-12645 - PubMed
  22. Brain Res. 2018 May 1;1686:94-100 - PubMed
  23. Pharmacol Rev. 2015;67(1):74-102 - PubMed
  24. Heart Lung Circ. 2018 Apr;27(4):477-483 - PubMed
  25. Circulation. 2007 Sep 18;116(12):1386-95 - PubMed
  26. Transl Stroke Res. 2018 Feb;9(1):51-63 - PubMed
  27. Exp Physiol. 2013 Feb;98(2):425-34 - PubMed
  28. Cell. 2018 May 17;173(5):1073-1081 - PubMed
  29. Eur J Pharmacol. 2017 May 15;803:84-93 - PubMed
  30. CNS Neurosci Ther. 2012 Dec;18(12):965-73 - PubMed
  31. Exp Neurol. 2010 Aug;224(2):347-55 - PubMed
  32. Transl Stroke Res. 2015 Feb;6(1):69-77 - PubMed
  33. Physiol Genomics. 2004 Sep 16;19(1):143-50 - PubMed
  34. Cardiol J. 2017;24(3):314-323 - PubMed
  35. Am J Hypertens. 2014 Jul;27(7):918-25 - PubMed
  36. Eur Stroke J. 2020 Mar;5(1):94-101 - PubMed
  37. Neurology. 2012 Oct 30;79(18):1853-61 - PubMed
  38. Neuron. 2010 Jul 29;67(2):181-98 - PubMed
  39. Exp Mol Pathol. 2020 Aug;115:104475 - PubMed
  40. J Neuroinflammation. 2019 Sep 16;16(1):181 - PubMed
  41. Stroke. 2017 Nov;48(11):3064-3072 - PubMed
  42. Chin Med J (Engl). 2018 Feb 5;131(3):347-351 - PubMed
  43. CNS Neurosci Ther. 2016 Jan;22(1):43-52 - PubMed
  44. J Neurol Sci. 2017 Apr 15;375:52-57 - PubMed
  45. J Thorac Cardiovasc Surg. 2019 Apr;157(4):1466-1476.e3 - PubMed
  46. Am J Physiol. 1997 Oct;273(4):H1707-12 - PubMed
  47. Behav Brain Res. 2018 Mar 15;340:87-93 - PubMed
  48. J Am Heart Assoc. 2014 May 16;3(3):e000968 - PubMed
  49. J Am Heart Assoc. 2018 Feb 24;7(5): - PubMed
  50. Sci Rep. 2016 Dec 01;6:36758 - PubMed
  51. J Neuroinflammation. 2018 May 28;15(1):167 - PubMed
  52. Neurochem Int. 2020 May;135:104690 - PubMed
  53. Int J Stroke. 2013 Feb;8(2):141-6 - PubMed
  54. J Cereb Blood Flow Metab. 2021 Jun;41(6):1277-1290 - PubMed
  55. Mol Ther Nucleic Acids. 2020 Jun 5;20:649-660 - PubMed
  56. Neurochem Res. 2007 Nov;32(11):1919-26 - PubMed
  57. JACC Cardiovasc Interv. 2010 Jan;3(1):49-55 - PubMed
  58. J Neurosci. 2019 Sep 25;39(39):7778-7789 - PubMed
  59. Int J Mol Med. 2014 Oct;34(4):957-66 - PubMed
  60. J Neurol Sci. 2015 Oct 15;357(1-2):270-5 - PubMed
  61. Circulation. 1993 Mar;87(3):893-9 - PubMed
  62. Clin Exp Pharmacol Physiol. 2017 Jun;44(6):656-663 - PubMed
  63. Neuroreport. 2016 May 4;27(7):469-75 - PubMed
  64. J Cereb Blood Flow Metab. 2012 Jun;32(6):1046-60 - PubMed
  65. Cond Med. 2019 Feb;2(2):61-68 - PubMed
  66. J Surg Res. 2016 Jan;200(1):13-20 - PubMed
  67. PLoS One. 2014 Jan 13;9(1):e85669 - PubMed
  68. CNS Neurosci Ther. 2018 Jun;24(6):519-527 - PubMed
  69. Neurochem Res. 2014 Nov;39(11):2068-77 - PubMed
  70. Lancet Neurol. 2016 Aug;15(9):913-924 - PubMed
  71. J Cereb Blood Flow Metab. 2012 May;32(5):851-9 - PubMed
  72. Cardiology. 2012;122(1):36-43 - PubMed
  73. Transl Stroke Res. 2014 Aug;5(4):484-90 - PubMed
  74. Prog Neurobiol. 2016 Sep;144:158-72 - PubMed
  75. Restor Neurol Neurosci. 2015;33(3):369-79 - PubMed
  76. J Trauma Acute Care Surg. 2015 Apr;78(4):698-703; discussion 703-5 - PubMed
  77. JACC Cardiovasc Interv. 2015 Jan;8(1 Pt B):178-188 - PubMed
  78. Cell Death Differ. 2007 Jul;14(7):1315-23 - PubMed
  79. Neurosci Res. 2006 May;55(1):65-73 - PubMed
  80. Front Neurol. 2020 Apr 28;11:313 - PubMed
  81. Stroke. 2017 May;48(5):1412-1415 - PubMed
  82. Neurol Res. 2018 Mar;40(3):182-188 - PubMed
  83. Ann Clin Transl Neurol. 2018 Jun 06;5(7):850-856 - PubMed
  84. Circ Cardiovasc Imaging. 2010 Nov;3(6):656-62 - PubMed
  85. Stroke. 2012 Oct;43(10):2794-9 - PubMed
  86. Cell Transplant. 2015;24(9):1901-11 - PubMed
  87. Neural Regen Res. 2018 Sep;13(9):1585-1593 - PubMed
  88. Sci Rep. 2020 Jul 24;10(1):12392 - PubMed
  89. Neurol Res. 2019 Jan;41(1):26-36 - PubMed
  90. JAMA Neurol. 2020 Jun 1;77(6):725-734 - PubMed
  91. J Appl Physiol (1985). 2019 Mar 1;126(3):755-763 - PubMed
  92. Nat Rev Drug Discov. 2013 Apr;12(4):265-86 - PubMed
  93. Neurobiol Stress. 2019 Jul 27;11:100189 - PubMed
  94. Nat Rev Neurol. 2015 Dec;11(12):698-710 - PubMed
  95. J Neurosci. 2015 Feb 25;35(8):3384-96 - PubMed
  96. Neurotherapeutics. 2015 Jul;12(3):667-77 - PubMed
  97. Sci Signal. 2009 Feb 03;2(56):pe6 - PubMed
  98. Int J Cardiol. 2015 Jan 15;178:239-46 - PubMed
  99. Basic Res Cardiol. 2014 Mar;109(2):400 - PubMed
  100. Trials. 2019 Mar 15;20(1):167 - PubMed
  101. Am J Physiol Heart Circ Physiol. 2016 Aug 1;311(2):H364-70 - PubMed
  102. Mol Ther. 2011 Oct;19(10):1769-79 - PubMed
  103. Acta Histochem. 2014 Jul;116(6):1062-7 - PubMed
  104. Brain Res. 2017 Aug 15;1669:44-54 - PubMed
  105. J Cereb Blood Flow Metab. 2017 Aug;37(8):3001-3014 - PubMed
  106. Cell Mol Neurobiol. 2017 Aug;37(6):1105-1114 - PubMed
  107. Redox Biol. 2017 Aug;12:491-498 - PubMed
  108. Metab Brain Dis. 2017 Dec;32(6):1805-1818 - PubMed
  109. Front Aging Neurosci. 2020 Mar 10;12:54 - PubMed
  110. Lancet Neurol. 2009 Apr;8(4):398-412 - PubMed
  111. JACC Cardiovasc Interv. 2013 Oct;6(10):1055-63 - PubMed
  112. Mol Neurobiol. 2013 Feb;47(1):197-208 - PubMed
  113. PLoS One. 2015 Mar 31;10(3):e0122778 - PubMed
  114. Aging Dis. 2018 Oct 1;9(5):869-879 - PubMed
  115. J Am Coll Cardiol. 2005 Aug 2;46(3):450-6 - PubMed
  116. Int J Mol Med. 2017 Oct;40(4):1201-1209 - PubMed
  117. Sci Rep. 2020 Mar 24;10(1):5361 - PubMed
  118. Cardiovasc Res. 2016 Dec;112(3):669-676 - PubMed
  119. CNS Neurosci Ther. 2013 Dec;19(12):917-25 - PubMed
  120. BMC Cardiovasc Disord. 2019 Sep 9;19(1):211 - PubMed
  121. PLoS One. 2013 Oct 14;8(10):e77211 - PubMed
  122. Stroke. 2018 Mar;49(3):e46-e110 - PubMed
  123. Lancet Neurol. 2016 Jul;15(8):869-881 - PubMed
  124. J Cereb Blood Flow Metab. 1998 Feb;18(2):123-9 - PubMed
  125. BMC Neurol. 2019 Aug 23;19(1):206 - PubMed
  126. Apoptosis. 2017 Nov;22(11):1353-1361 - PubMed
  127. Lancet Neurol. 2012 Oct;11(10):860-7 - PubMed
  128. Brain Inj. 2018;32(11):1429-1436 - PubMed
  129. Neuroreport. 2019 Aug 14;30(12):834-841 - PubMed
  130. Ann Clin Transl Neurol. 2020 Jun;7(6):972-979 - PubMed
  131. Acta Neurol Belg. 2021 Feb;121(1):95-106 - PubMed
  132. Int J Stroke. 2016 Oct;11(8):938-943 - PubMed
  133. Oxid Med Cell Longev. 2013;2013:859056 - PubMed
  134. Brain Res. 2019 Mar 15;1707:172-183 - PubMed
  135. Brain Res. 2018 Jan 15;1679:1-9 - PubMed
  136. Brain Res Bull. 2018 May;139:105-113 - PubMed
  137. Circulation. 2017 Apr 4;135(14):1325-1335 - PubMed
  138. Stroke. 2011 May;42(5):1387-91 - PubMed
  139. J Am Heart Assoc. 2019 Dec 3;8(23):e013572 - PubMed
  140. Stroke. 2014 Jan;45(1):159-67 - PubMed
  141. PLoS One. 2012;7(2):e30892 - PubMed
  142. Acta Neurochir Suppl. 2013;115:193-8 - PubMed
  143. Brain Res. 2012 Jun 12;1459:81-90 - PubMed
  144. Mol Ther Nucleic Acids. 2017 Jun 16;7:278-287 - PubMed
  145. Brain Res. 1990 Sep 24;528(1):21-4 - PubMed
  146. PLoS One. 2020 Feb 4;15(2):e0227263 - PubMed
  147. Brain Res. 2012 Mar 22;1445:92-102 - PubMed
  148. Neurochem Int. 2018 Jun;116:95-103 - PubMed
  149. Sheng Li Xue Bao. 2004 Jun 25;56(3):407-12 - PubMed
  150. Basic Res Cardiol. 2014;109(5):423 - PubMed
  151. PLoS One. 2014 Oct 15;9(10):e109279 - PubMed

Publication Types

Grant support