Display options
Share it on

Front Neurosci. 2021 Oct 14;15:718958. doi: 10.3389/fnins.2021.718958. eCollection 2021.

Structural Differences Across Multiple Visual Cortical Regions in the Absence of Cone Function in Congenital Achromatopsia.

Frontiers in neuroscience

Rebecca Lowndes, Barbara Molz, Lucy Warriner, Anne Herbik, Pieter B de Best, Noa Raz, Andre Gouws, Khazar Ahmadi, Rebecca J McLean, Irene Gottlob, Susanne Kohl, Lars Choritz, John Maguire, Martin Kanowski, Barbara Käsmann-Kellner, Ilse Wieland, Eyal Banin, Netta Levin, Michael B Hoffmann, Antony B Morland, Heidi A Baseler

Affiliations

  1. Department of Psychology, University of York, York, United Kingdom.
  2. York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom.
  3. Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
  4. Department of Ophthalmology, University Hospital, Otto von Guericke University, Magdeburg, Germany.
  5. MRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel.
  6. University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom.
  7. Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Tübingen, Germany.
  8. School of Optometry and Vision Sciences, University of Bradford, Bradford, United Kingdom.
  9. Department of Neurology, University Hospital, Otto von Guericke University, Magdeburg, Germany.
  10. Department of Ophthalmology, Saarland University Hospital and Medical Faculty of the Saarland University Hospital, Homburg, Germany.
  11. Department of Molecular Genetics, Institute for Human Genetics, University Hospital, Otto von Guericke University, Magdeburg, Germany.
  12. Degenerative Diseases of the Retina Unit, Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel.
  13. Center for Behavioral Brain Sciences, Magdeburg, Germany.
  14. York Biomedical Research Institute, University of York, York, United Kingdom.
  15. Hull York Medical School, University of York, York, United Kingdom.

PMID: 34720857 PMCID: PMC8551799 DOI: 10.3389/fnins.2021.718958

Abstract

Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (

Copyright © 2021 Lowndes, Molz, Warriner, Herbik, de Best, Raz, Gouws, Ahmadi, McLean, Gottlob, Kohl, Choritz, Maguire, Kanowski, Käsmann-Kellner, Wieland, Banin, Levin, Hoffmann, Morland and Baseler.

Keywords: achromatopsia; anatomical brain regions; congenital visual impairment; parallel visual pathways; structural plasticity; ventral and dorsal pathways; visual areas

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Int J Mol Sci. 2021 Apr 26;22(9): - PubMed
  2. Trends Neurosci. 1992 Jan;15(1):20-5 - PubMed
  3. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5 - PubMed
  4. Invest Ophthalmol Vis Sci. 2019 Dec 2;60(15):5045-5051 - PubMed
  5. Vis Neurosci. 2015 Jan;32:E020 - PubMed
  6. J Neurosci. 1991 Mar;11(3):641-9 - PubMed
  7. Neuroimage. 2009 Aug 1;47(1):98-106 - PubMed
  8. Nat Neurosci. 2003 Sep;6(9):915-6 - PubMed
  9. J Med Genet. 2004 Feb;41(2):e20 - PubMed
  10. Acta Ophthalmol. 2013 Feb;91(1):58-65 - PubMed
  11. Mol Vis. 2005 Nov 17;11:996-1001 - PubMed
  12. Curr Opin Ophthalmol. 2015 Jul;26(5):333-40 - PubMed
  13. Ophthalmology. 2015 May;122(5):997-1007 - PubMed
  14. Front Integr Neurosci. 2015 Sep 15;9:49 - PubMed
  15. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 - PubMed
  16. Brain. 1990 Dec;113 ( Pt 6):1721-77 - PubMed
  17. PLoS One. 2016 Nov 3;11(11):e0164677 - PubMed
  18. Cortex. 2014 Jul;56:99-110 - PubMed
  19. Can J Ophthalmol. 2012 Oct;47(5):399-409 - PubMed
  20. Front Neurosci. 2020 May 12;14:291 - PubMed
  21. Exp Eye Res. 2015 Dec;141:171-8 - PubMed
  22. Ophthalmic Genet. 2018 Apr;39(2):149-157 - PubMed
  23. Br J Ophthalmol. 2016 Jan;100(1):115-21 - PubMed
  24. Nat Neurosci. 2013 Mar;16(3):267-9 - PubMed
  25. Anat Embryol (Berl). 1994 Oct;190(4):351-66 - PubMed
  26. J Neurosci. 2009 Aug 26;29(34):10638-52 - PubMed
  27. Neurosci Biobehav Rev. 2019 Dec;107:765-774 - PubMed
  28. Ophthalmic Physiol Opt. 2016 May;36(3):240-65 - PubMed
  29. Brain. 1997 Dec;120 ( Pt 12):2229-42 - PubMed
  30. Brain. 2015 Jun;138(Pt 6):1679-95 - PubMed
  31. Nature. 1999 Apr 8;398(6727):475-6 - PubMed
  32. J Neurosci. 2009 Feb 18;29(7):2205-11 - PubMed
  33. J Vis. 2010 May 01;10(5):1 - PubMed
  34. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9 - PubMed
  35. J Physiol Paris. 2009 Jan-Mar;103(1-2):88-97 - PubMed
  36. Mol Vis. 2020 Aug 22;26:588-602 - PubMed
  37. Acta Psychol (Amst). 2011 Sep;138(1):244-53 - PubMed
  38. IEEE Trans Med Imaging. 2007 Apr;26(4):518-29 - PubMed
  39. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  40. Exp Brain Res. 2008 May;187(1):41-9 - PubMed
  41. J Cogn Neurosci. 2012 Apr;24(4):819-29 - PubMed
  42. Neuropsychologia. 2020 Jan;136:107266 - PubMed
  43. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):963-73 - PubMed
  44. Eur J Neurosci. 2015 Dec;42(11):2923-33 - PubMed
  45. Neuroimage. 2006 Jul 1;31(3):968-80 - PubMed
  46. Eur J Neurosci. 2007 Jan;25(2):491-502 - PubMed
  47. Hum Brain Mapp. 2015 Dec;36(12):5265-74 - PubMed
  48. Proc Biol Sci. 2019 Oct 9;286(1912):20191910 - PubMed
  49. J Neurophysiol. 2009 Nov;102(5):2704-18 - PubMed
  50. J Vis. 2011 Apr 05;11(4): - PubMed
  51. JAMA Ophthalmol. 2020 Jun 1;138(6):643-651 - PubMed
  52. Br J Ophthalmol. 2015 Apr;99(4):571-6 - PubMed
  53. PLoS Biol. 2016 Oct 25;14(10):e1002569 - PubMed
  54. J Neurosci. 2018 Apr 11;38(15):3657-3668 - PubMed
  55. Am J Hum Genet. 2001 Oct;69(4):722-37 - PubMed
  56. J Neurosci. 1997 Sep 15;17(18):7060-78 - PubMed
  57. Br J Ophthalmol. 2021 May 18;: - PubMed
  58. Neural Plast. 2016;2016:6029241 - PubMed
  59. Invest Ophthalmol Vis Sci. 2016 Apr 1;57(4):2251-9 - PubMed
  60. Optom Vis Sci. 1996 Jul;73(7):446-56 - PubMed
  61. Nat Neurosci. 2007 May;10(5):657-62 - PubMed
  62. PLoS Comput Biol. 2014 Mar 27;10(3):e1003538 - PubMed
  63. J Neurosci. 2006 Dec 20;26(51):13128-42 - PubMed
  64. Brain. 2009 Jul;132(Pt 7):1898-906 - PubMed
  65. J Neurosci. 2021 Sep 1;41(35):7363-7371 - PubMed
  66. Ophthalmology. 2009 Oct;116(10):1984-9.e1 - PubMed
  67. Brain Struct Funct. 2016 Jul;221(6):2891-903 - PubMed
  68. Eur J Neurosci. 2000 Jan;12(1):172-93 - PubMed
  69. Cereb Cortex. 2018 Feb 1;28(2):738-749 - PubMed
  70. Neuron. 2007 Oct 25;56(2):366-83 - PubMed
  71. Q J Exp Psychol. 1974 Feb;26(1):114-24 - PubMed
  72. Nat Neurosci. 2005 Aug;8(8):1102-9 - PubMed
  73. Curr Biol. 2016 Nov 21;26(22):3096-3100 - PubMed
  74. Optom Vis Sci. 1996 Jul;73(7):457-65 - PubMed
  75. EBioMedicine. 2018 Apr;30:52-61 - PubMed
  76. Elife. 2018 Dec 06;7: - PubMed
  77. Neuroimage. 1999 Feb;9(2):195-207 - PubMed
  78. J Physiol. 1986 Feb;371:365-85 - PubMed
  79. Acta Ophthalmol. 2016 Mar;94(2):113-21 - PubMed
  80. Neuroimage. 2004 Jul;22(3):1060-75 - PubMed

Publication Types