Display options
Share it on

EMBO Rep. 2021 Dec 06;22(12):e52764. doi: 10.15252/embr.202152764. Epub 2021 Oct 18.

The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation.

EMBO reports

Sarah El Kharraz, Vanessa Dubois, Martin E van Royen, Adriaan B Houtsmuller, Ekatarina Pavlova, Nina Atanassova, Tien Nguyen, Arnout Voet, Roy Eerlings, Florian Handle, Stefan Prekovic, Elien Smeets, Lisa Moris, Wout Devlies, Claes Ohlsson, Matti Poutanen, Kevin J Verstrepen, Geert Carmeliet, Kaisa-Mari Launonen, Laura Helminen, Jorma J Palvimo, Claude Libert, Dirk Vanderschueren, Christine Helsen, Frank Claessens

Affiliations

  1. Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
  2. Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
  3. Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
  4. Institute of Experimental Morphology Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria.
  5. Department of Chemistry, KU Leuven, Leuven, Belgium.
  6. Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  7. Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden.
  8. Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
  9. VIB Laboratory for Systems Biology and KU Leuven Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Leuven, Belgium.
  10. Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
  11. VIB Center for Inflammation Research, VIB, Ghent, Belgium.
  12. Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium.

PMID: 34661369 DOI: 10.15252/embr.202152764

Abstract

Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (AR

© 2021 The Authors.

Keywords: androgen receptor; chromatin binding; dimerization; ligand-binding domain; transcriptional activation

References

  1. Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19: 6085-6097 - PubMed
  2. Amberg DC, Burke D, Strathern JN, Burke D, Laboratory CSH (2005) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press - PubMed
  3. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269-1304 - PubMed
  4. Batista RL, Costa EMF, Rodrigues ADS, Gomes NL, Faria JA, Nishi MY, Arnhold IJP, Domenice S, Mendonca BBD (2018) Androgen insensitivity syndrome: a review. Arch Endocrinol Metab 62: 227-235 - PubMed
  5. Billas I, Moras D (2013) Allosteric controls of nuclear receptor function in the regulation of transcription. J Mol Biol 425: 2317-2329 - PubMed
  6. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM et al (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110: 93-105 - PubMed
  7. Boehmer AL, Brinkmann O, Bruggenwirth H, van Assendelft C, Otten BJ, Verleun-Mooijman MC, Niermeijer MF, Brunner HG, Rouwe CW, Waelkens JJ et al (2001) Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab 86: 4151-4160 - PubMed
  8. Brinkmann AO, Jenster G, Ris-Stalpers C, van der Korput JAGM, Brüggenwirth HT, Boehmer ALM, Trapman J (1995) Androgen receptor mutations. J Steroid Biochem Mol Biol 53: 443-448 - PubMed
  9. Brown TR (1995) Human androgen insensitivity syndrome. J Androl 16: 299-303 - PubMed
  10. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engström O, Öhman L, Greene GL, Gustafsson J-Å, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753-758 - PubMed
  11. Case DA, Betz RM, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N et al (2016) AMBER 2016, San Francisco, CA: University of California - PubMed
  12. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456: 350-356 - PubMed
  13. Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D, Fermin D, Qin ZS, Tyers M, Gingras A-C, Nesvizhskii AI (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8: 70-73 - PubMed
  14. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A (2008) Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal 6: e008 - PubMed
  15. De Bruyn R, Bollen R, Claessens F (2011) Identification and characterization of androgen response elements. Methods Mol Biol 776: 81-93 - PubMed
  16. De Gendt K, Swinnen JV, Saunders PTK, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lecureuil C et al (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 101: 1327-1332 - PubMed
  17. Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F (2010) The rules of DNA recognition by the androgen receptor. Mol Endocrinol 24: 898-913 - PubMed
  18. Doesburg P, Kuil CW, Berrevoets CA, Steketee K, Faber PW, Mulder E, Brinkmann AO, Trapman J (1997) Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor†. Biochemistry 36: 1052-1064 - PubMed
  19. Dubois VA-O, Gheeraert C, Vankrunkelsven WA-OX, Dubois-Chevalier J, Dehondt H, Bobowski-Gerard MA-O, Vinod MA-O, Zummo FP, Güiza FA-O, Ploton M et al (2020) Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Mol Syst Biol 16: e9156 - PubMed
  20. Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P et al (2014) A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J 28: 2979-2994 - PubMed
  21. Escriva H, Bertrand S, Laudet V (2004) The evolution of the nuclear receptor superfamily. Essays Biochem 40: 11-26 - PubMed
  22. Galani A, Kitsiou-Tzeli S, Sofokleous C, Kanavakis E, Kalpini-Mavrou A (2008) Androgen insensitivity syndrome: clinical features and molecular defects. Hormones 7: 217-229 - PubMed
  23. Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, Moritz L, Sultan C, Gurczynski SJ, Moore BB et al (2018) A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq. Dev Cell 46: 651-667 - PubMed
  24. Hay CW, McEwan IJ (2012) The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. PLoS One 7: e32514 - PubMed
  25. He B, Kemppainen JA, Wilson EM (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275: 22986-22994 - PubMed
  26. He B, Wilson EM (2002) The NH(2)-terminal and carboxyl-terminal interaction in the human androgen receptor. Mol Genet Metab 75: 293-298 - PubMed
  27. He B, Gampe Jr RT, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16: 425-438 - PubMed
  28. Helsen C, Dubois V, Verfaillie A, Young J, Trekels M, Vancraenenbroeck R, De Maeyer M, Claessens F (2012) Evidence for DNA-binding domain-ligand-binding domain communications in the androgen receptor. Mol Cell Biol 32: 3033-3043 - PubMed
  29. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712-725 - PubMed
  30. Kalkhoven E, Valentine JE, Heery DM, Parker MG (1998) Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 17: 232-243 - PubMed
  31. Karvonen U, Kallio PJ, Jänne OA, Palvimo JJ (1997) Interaction of androgen receptors with androgen response element in intact cells: roles of amino- and carboxyl-terminal regions and the ligand*. J Biol Chem 272: 15973-15979 - PubMed
  32. Kerkhofs S, Denayer S, Haelens A, Claessens F (2009) Androgen receptor knockout and knock-in mouse models. J Mol Endocrinol 42: 11-17 - PubMed
  33. Khalil R, Simitsidellis I, Kim NR, Jardi F, Schollaert D, Deboel L, Saunders P, Carmeliet G, Claessens F, Vanderschueren D et al (2020) Androgen action on renal calcium and phosphate handling: effects of bisphosphonate treatment and low calcium diet. Mol Cell Endocrinol 514: 110891 - PubMed
  34. Kim NR, Khalil R, David K, Antonio L, Schollaert D, Deboel L, Van Herck E, Wardenier N, Cools M, Decallonne B et al (2020) Novel model to study the physiological effects of temporary or prolonged sex steroid deficiency in male mice. Am J Physiol Endocrinol Metab 320: E415-E424 - PubMed
  35. Kim NR, David K, Corbeels K, Khalil R, Antonio L, Schollaert D, Deboel L, Ohlsson CA-O, Gustafsson J, Vangoitsenhoven R et al (2021) Testosterone reduces body fat in male mice by stimulation of physical activity via extrahypothalamic ERα signaling. Endocrinology 162: bqab045 - PubMed
  36. Kunieda T, Xian M, Kobayashi E, Imamichi T, Moriwaki K, Toyoda Y (1992) Sexing of mouse preimplantation embryos by detection of Y chromosome-specific sequences using polymerase chain reaction1. Biol Reprod 46: 692-697 - PubMed
  37. Lempiainen JK, Niskanen EA, Vuoti K-M, Lampinen RE, Göös H, Varjosalo M, Palvimo JJ (2017) Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol Cell Proteom 16: 1462-1474 - PubMed
  38. Li J, Fu J, Toumazou C, Yoon HG, Wong J (2006) A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Mol Endocrinol 20: 776-785 - PubMed
  39. Louw A (2019) GR dimerization and the impact of GR dimerization on GR protein stability and half-life. Front Immunol 10: 1693 - PubMed
  40. Nadal M, Prekovic S, Gallastegui N, Helsen C, Abella M, Zielinska K, Gay M, Vilaseca M, Taulès M, Houtsmuller AB et al (2017) Structure of the homodimeric androgen receptor ligand-binding domain. Nat Commun 8: 14388 - PubMed
  41. Nilsson ME, Vandenput L, Tivesten Å, Norlén A-K, Lagerquist MK, Windahl SH, Börjesson AE, Farman HH, Poutanen M, Benrick A et al (2015) Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology 156: 2492-2502 - PubMed
  42. Paakinaho V, Kaikkonen S, Makkonen H, Benes V, Palvimo JJ (2014) SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res 42: 1575-1592 - PubMed
  43. Parker KL, Schimmer BP, Schedl A (1999) Genes essential for early events in gonadal development. Cell Mol Life Sci 55: 831-838 - PubMed
  44. Pauwels S, Antonio L, Jans I, Lintermans A, Neven P, Claessens F, Decallonne B, Billen J, Vanderschueren D, Vermeersch P (2013) Sensitive routine liquid chromatography-tandem mass spectrometry method for serum estradiol and estrone without derivatization. Anal Bioanal Chem 405: 8569-8577 - PubMed
  45. Pihlajamaa P, Sahu B, Lyly L, Aittomäki V, Hautaniemi S, Jänne OA (2014) Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J 33: 312-326 - PubMed
  46. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845-854 - PubMed
  47. R Core Team (2015) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/ - PubMed
  48. Rebourcet D, Mackay R, Darbey A, Curley MK, Jørgensen A, Frederiksen H, Mitchell RT, O'Shaughnessy PJ, Nef S, Smith LB (2020) Ablation of the canonical testosterone production pathway via knockout of the steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular testosterone production. FASEB J 34: 10373-10386 - PubMed
  49. van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ, Verschure PJ, Trapman J, Houtsmuller AB (2007) Compartmentalization of androgen receptor protein-protein interactions in living cells. J Cell Biol 177: 63-72 - PubMed
  50. van Royen ME, Dinant C, Farla P, Trapman J, Houtsmuller AB (2009) FRAP and FRET methods to study nuclear receptors in living cells. Methods Mol Biol 505: 69-96 - PubMed
  51. Sahu B, Pihlajamaa P, Dubois V, Kerkhofs S, Claessens F, Jänne OA (2014) Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res 42: 4230-4240 - PubMed
  52. Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T (2019) Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93: 253-272 - PubMed
  53. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA 101: 4758-4763 - PubMed
  54. Sipilä P, Junnila A, Hakkarainen J, Huhtaniemi R, Mairinoja L, Zhang FP, Strauss L, Ohlsson C, Kotaja N, Huhtaniemi I et al (2020) The lack of HSD17B3 in male mice results in disturbed Leydig cell maturation and endocrine imbalance akin to humans with HSD17B3 deficiency. FASEB J 34: 6111-6128 - PubMed
  55. Tan KAL, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PTK, Denolet E, Verhoeven G (2005) The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or sertoli cell-selective ablation of the androgen receptor. Endocrinology 146: 2674-2683 - PubMed
  56. Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci USA 95: 5998 - PubMed
  57. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623-627 - PubMed
  58. Van Royen ME, Van Cappellen WA, De Vos C, Houtsmuller AB, Trapman J (2012) Stepwise androgen receptor dimerization. J Cell Sci 125: 1970-1979 - PubMed
  59. Vanderschueren D, Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R (2000) An aged rat model of partial androgen deficiency: prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology 141: 1642-1647 - PubMed
  60. Wang R-S, Yeh S, Tzeng C-R, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30: 119-132 - PubMed
  61. Williams SP, Sigler PB (1998) Atomic structure of progesterone complexed with its receptor. Nature 393: 392-396 - PubMed

Publication Types

Grant support