Display options
Share it on

J Mol Biol. 2021 Dec 03;433(24):167322. doi: 10.1016/j.jmb.2021.167322. Epub 2021 Oct 21.

Visualization of Sparsely-populated Lower-order Oligomeric States of Human Mitochondrial Hsp60 by Cryo-electron Microscopy.

Journal of molecular biology

Marielle A Wälti, Bertram Canagarajah, Charles D Schwieters, G Marius Clore

Affiliations

  1. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
  2. Laboratory of Cell and Molecular Biology, and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
  3. Computational Biomolecular Nuclear Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
  4. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA. Electronic address: [email protected].

PMID: 34688687 PMCID: PMC8627483 DOI: 10.1016/j.jmb.2021.167322

Abstract

Human mitochondrial Hsp60 (mtHsp60) is a class I chaperonin, 51% identical in sequence to the prototypical E. coli chaperonin GroEL. mtHsp60 maintains the proteome within the mitochondrion and is associated with various neurodegenerative diseases and cancers. The oligomeric assembly of mtHsp60 into heptameric ring structures that enclose a folding chamber only occurs upon addition of ATP and is significantly more labile than that of GroEL, where the only oligomeric species is a tetradecamer. The lability of the mtHsp60 heptamer provides an opportunity to detect and visualize lower-order oligomeric states that may represent intermediates along the assembly/disassembly pathway. Using cryo-electron microscopy we show that, in addition to the fully-formed heptamer and an "inverted" tetradecamer in which the two heptamers associate via their apical domains, thereby blocking protein substrate access, well-defined lower-order oligomeric species, populated at less than 6% of the total particles, are observed. Specifically, we observe open trimers, tetramers, pentamers and hexamers (comprising ∼4% of the total particles) with rigid body rotations from one subunit to the next within ∼1.5-3.5° of that for the heptamer, indicating that these may lie directly on the assembly/disassembly pathway. We also observe a closed-ring hexamer (∼2% of the particles) which may represent an off-pathway species in the assembly/disassembly process in so far that conversion to the mature heptamer would require the closed-ring hexamer to open to accept an additional subunit. Lastly, we observe several classes of tetramers where additional subunits characterized by fuzzy electron density are caught in the act of oligomer extension.

Published by Elsevier Ltd.

Keywords: chaperones; class I chaperonins; cryo-electron microscopy; human mitochondrial Hsp60; sparsely-populated lower-order oligomeric states

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this pa

References

  1. J Neurol. 2007 Jul;254(7):897-900 - PubMed
  2. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4030-5 - PubMed
  3. Trends Biochem Sci. 2016 Jan;41(1):62-76 - PubMed
  4. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12775-80 - PubMed
  5. DNA Cell Biol. 1990 Oct;9(8):545-52 - PubMed
  6. Nature. 2011 Jul 20;475(7356):324-32 - PubMed
  7. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12021-5 - PubMed
  8. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8259-8264 - PubMed
  9. Methods Enzymol. 1998;290:203-17 - PubMed
  10. J Struct Biol. 2016 Jan;193(1):1-12 - PubMed
  11. Q Rev Biophys. 2015 Feb;48(1):35-116 - PubMed
  12. Proc Natl Acad Sci U S A. 2015 May 12;112(19):6044-9 - PubMed
  13. J Mol Biol. 1996 Aug 9;261(1):43-61 - PubMed
  14. Annu Rev Cell Dev Biol. 2007;23:115-45 - PubMed
  15. Sci Transl Med. 2018 Aug 15;10(454): - PubMed
  16. Nature. 1990 Nov 29;348(6300):455-8 - PubMed
  17. J Struct Biol. 2013 Dec;184(3):427-37 - PubMed
  18. Nature. 1994 Oct 13;371(6498):578-86 - PubMed
  19. Curr Opin Struct Biol. 2018 Apr;49:162-168 - PubMed
  20. Chem Rev. 2009 Sep;109(9):4108-39 - PubMed
  21. Cell Stress Chaperones. 2009 Jan;14(1):105-11 - PubMed
  22. Proc Natl Acad Sci U S A. 2021 May 25;118(21): - PubMed
  23. Nat Commun. 2020 Apr 21;11(1):1916 - PubMed
  24. Am J Hum Genet. 2008 Jul;83(1):30-42 - PubMed
  25. Methods Mol Biol. 2009;498:297-307 - PubMed
  26. Protein Sci. 2018 Jan;27(1):26-40 - PubMed
  27. Nature. 1989 Dec 21-28;342(6252):884-9 - PubMed
  28. Expert Opin Ther Targets. 2014 Feb;18(2):185-208 - PubMed
  29. J Magn Reson. 2001 Apr;149(2):239-44 - PubMed
  30. Am J Hum Genet. 2002 May;70(5):1328-32 - PubMed
  31. Electrophoresis. 2009 Jul;30(14):2454-9 - PubMed
  32. J Struct Biol. 2005 Oct;152(1):36-51 - PubMed
  33. Annu Rev Biophys Biomol Struct. 2001;30:245-69 - PubMed
  34. Nat Rev Mol Cell Biol. 2013 Oct;14(10):630-42 - PubMed
  35. Elife. 2018 Nov 09;7: - PubMed
  36. PLoS One. 2015 Mar 23;10(3):e0120445 - PubMed
  37. Nature. 1989 Jan 5;337(6202):44-7 - PubMed
  38. J Mol Biol. 2013 May 13;425(9):1476-87 - PubMed
  39. J Biol Chem. 2009 Oct 9;284(41):28198-28203 - PubMed
  40. Curr Opin Struct Biol. 2008 Feb;18(1):35-42 - PubMed
  41. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4509-12 - PubMed
  42. Nat Methods. 2017 Apr;14(4):331-332 - PubMed
  43. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4298-305 - PubMed
  44. iScience. 2020 Dec 31;24(1):102022 - PubMed
  45. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E2958-66 - PubMed
  46. J Biomol NMR. 2002 Jul;23(3):221-5 - PubMed
  47. Protein Sci. 2020 Feb;29(2):360-377 - PubMed
  48. Methods Enzymol. 1998;290:141-6 - PubMed
  49. Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749): - PubMed
  50. Trends Biochem Sci. 2002 Dec;27(12):627-32 - PubMed
  51. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11195-7 - PubMed
  52. J Struct Biol. 2012 Dec;180(3):519-30 - PubMed

Publication Types

Grant support