Display options
Share it on

Biophys J. 2021 Nov 16;120(22):4980-4991. doi: 10.1016/j.bpj.2021.10.014. Epub 2021 Oct 16.

General tissue mass transfer model for cryopreservation applications.

Biophysical journal

Ross M Warner, Robyn Shuttleworth, James D Benson, Ali Eroglu, Adam Z Higgins

Affiliations

  1. School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon.
  2. Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  3. Department of Neuroscience and Regenerative Medicine, Medical College of Georgia - Augusta University, Augusta, Georgia.
  4. School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon. Electronic address: [email protected].

PMID: 34662558 PMCID: PMC8633834 DOI: 10.1016/j.bpj.2021.10.014

Abstract

Successful cryopreservation of complex specimens, such as tissues and organs, would greatly benefit both the medical and scientific research fields. Vitrification is one of the most promising techniques for complex specimen cryopreservation, but toxicity remains a major challenge because of the high concentration of cryoprotectants (CPAs) needed to vitrify. Our group has approached this problem using mathematical optimization to design less toxic CPA equilibration methods for cells. To extend this approach to tissues, an appropriate mass transfer model is required. Fick's law is commonly used, but this simple modeling framework does not account for the complexity of mass transfer in tissues, such as the effects of fixed charges, tissue size changes, and the interplay between cell membrane transport and transport through the extracellular fluid. Here, we propose a general model for mass transfer in tissues that accounts for all of these phenomena. To create this model, we augmented a previously published acellular model of mass transfer in articular cartilage to account for the effects of cells. We show that the model can accurately predict changes in CPA concentration and tissue size for both articular cartilage and pancreatic islets, tissue types with vastly different properties.

Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved.

References

  1. J Biomech Eng. 2007 Aug;129(4):503-10 - PubMed
  2. Cryobiology. 1998 Dec;37(4):271-89 - PubMed
  3. Cryobiology. 2021 Feb;98:219-232 - PubMed
  4. Hum Reprod. 1995 May;10(5):1109-22 - PubMed
  5. Cryobiology. 2018 Feb;80:144-155 - PubMed
  6. J Biomech Eng. 1991 Aug;113(3):245-58 - PubMed
  7. J Orthop Res. 1988;6(1):109-15 - PubMed
  8. Ann Biomed Eng. 2005 May;33(5):709-18 - PubMed
  9. PLoS One. 2015 Nov 25;10(11):e0142828 - PubMed
  10. Cryobiology. 2004 Apr;48(2):157-78 - PubMed
  11. Biotechnol Prog. 2003 May-Jun;19(3):972-81 - PubMed
  12. Cryobiology. 1998 Dec;37(4):290-9 - PubMed
  13. Cell Transplant. 1993 Nov-Dec;2(6):461-5 - PubMed
  14. Sci Rep. 2019 Oct 30;9(1):15577 - PubMed
  15. Biochim Biophys Acta. 2000 Oct 18;1502(2):201-6 - PubMed
  16. Med Eng Phys. 2003 Sep;25(7):573-9 - PubMed
  17. J Histochem Cytochem. 1975 Mar;23(3):187-93 - PubMed
  18. Cryobiology. 2012 Jun;64(3):144-51 - PubMed
  19. Cryobiology. 2012 Feb;64(1):1-11 - PubMed
  20. Cryobiology. 2012 Jun;64(3):185-91 - PubMed
  21. Biophys J. 2009 Apr 8;96(7):2559-71 - PubMed
  22. Cryobiology. 2004 Feb;48(1):22-35 - PubMed
  23. Rejuvenation Res. 2006 Summer;9(2):279-91 - PubMed
  24. Ann N Y Acad Sci. 1998 Sep 11;858:191-204 - PubMed
  25. Biomaterials. 2012 Sep;33(26):6061-8 - PubMed
  26. Cryobiology. 2007 Aug;55(1):10-8 - PubMed
  27. Biophys J. 2012 Mar 21;102(6):1284-93 - PubMed
  28. Biotechnol Prog. 2012 Jul;28(4):1079-87 - PubMed
  29. Analyst. 2018 Jan 15;143(2):420-428 - PubMed
  30. Mol Reprod Dev. 2005 Mar;70(3):333-43 - PubMed
  31. Osteoarthritis Cartilage. 2004 Nov;12(11):917-23 - PubMed
  32. Math Biosci. 2014 Aug;254:64-75 - PubMed
  33. Cryobiology. 2010 Dec;61(3):297-302 - PubMed
  34. Cryobiology. 2009 Feb;58(1):110-114 - PubMed
  35. Organogenesis. 2009 Jul;5(3):167-75 - PubMed
  36. Cryobiology. 2014 Feb;68(1):50-6 - PubMed
  37. Nat Biotechnol. 2000 Mar;18(3):296-9 - PubMed
  38. Ann N Y Acad Sci. 1998 Sep 11;858:147-62 - PubMed
  39. Cryobiology. 2016 Aug;73(1):80-92 - PubMed
  40. Physiol Rev. 1981 Jul;61(3):556-643 - PubMed
  41. Biophys J. 2009 Dec 16;97(12):3054-64 - PubMed
  42. J Biol Chem. 2018 Jan 12;293(2):567-578 - PubMed
  43. Nat Biotechnol. 2017 Jun 7;35(6):530-542 - PubMed
  44. Biotechnol Prog. 2002 Mar-Apr;18(2):354-61 - PubMed
  45. Theor Biol Med Model. 2014 Mar 20;11:13 - PubMed
  46. J Phys Chem B. 2007 Feb 22;111(7):1775-85 - PubMed
  47. Cryobiology. 2016 Apr;72(2):169-82 - PubMed

Publication Types

Grant support