Display options
Share it on

Front Microbiol. 2021 Oct 06;12:727236. doi: 10.3389/fmicb.2021.727236. eCollection 2021.

The Antiviral Effect of Novel Steroidal Derivatives on Flaviviruses.

Frontiers in microbiology

Luping Zhang, Dengyuan Zhou, Qiuyan Li, Shuo Zhu, Muhammad Imran, Hongyu Duan, Shengbo Cao, Shaoyong Ke, Jing Ye

Affiliations

  1. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
  2. Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  3. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
  4. National Biopesticide Engineering Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan, China.

PMID: 34690968 PMCID: PMC8527100 DOI: 10.3389/fmicb.2021.727236

Abstract

Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs. In the present study, the antiviral effect of steroidal dehydroepiandrosterone (DHEA) and 23 synthetic derivatives against flaviviruses such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), and Dengue virus (DENV) were appraised by examining the characteristics of virus infection both

Copyright © 2021 Zhang, Zhou, Li, Zhu, Imran, Duan, Cao, Ke and Ye.

Keywords: DHEA derivatives; antiviral activity; flavivirus; steroids; therapy

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Nat Commun. 2021 May 13;12(1):2766 - PubMed
  2. J Infect Dis. 1992 Mar;165(3):413-8 - PubMed
  3. J Neuroinflammation. 2018 Aug 25;15(1):238 - PubMed
  4. Virology. 2016 Nov;498:116-127 - PubMed
  5. Antiviral Res. 2012 Jul;95(1):37-48 - PubMed
  6. FASEB J. 1993 Mar;7(5):414-9 - PubMed
  7. J Virol. 2013 Jan;87(1):148-62 - PubMed
  8. J Virol. 2009 May;83(9):4338-44 - PubMed
  9. Nat Rev Microbiol. 2005 Jan;3(1):13-22 - PubMed
  10. J Gen Virol. 2014 Apr;95(Pt 4):806-815 - PubMed
  11. Nature. 2004 Jan 22;427(6972):313-9 - PubMed
  12. PLoS Pathog. 2013;9(9):e1003585 - PubMed
  13. mBio. 2020 Apr 14;11(2): - PubMed
  14. J Med Virol. 1988 Nov;26(3):301-14 - PubMed
  15. Future Microbiol. 2016 Oct;11:1227-1248 - PubMed
  16. Expert Opin Drug Discov. 2016;11(5):433-45 - PubMed
  17. J Virol. 2017 Oct 13;91(21): - PubMed
  18. Trop Biomed. 2020 Sep 1;37(3):713-721 - PubMed
  19. Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12 - PubMed
  20. J Virol. 2017 Sep 12;91(19): - PubMed
  21. N Engl J Med. 1986 Dec 11;315(24):1519-24 - PubMed
  22. Cell Host Microbe. 2009 Apr 23;5(4):318-28 - PubMed
  23. Emerg Microbes Infect. 2021 Dec;10(1):1257-1271 - PubMed
  24. Chem Rev. 2018 Apr 25;118(8):4448-4482 - PubMed
  25. Virol J. 2013 Aug 12;10:258 - PubMed
  26. Endocr Rev. 2003 Apr;24(2):152-82 - PubMed
  27. Structure. 2000 Jan 15;8(1):25-33 - PubMed
  28. Endocrinology. 1999 Feb;140(2):880-7 - PubMed
  29. Vet J. 2009 Nov;182(2):327-35 - PubMed
  30. Arterioscler Thromb Vasc Biol. 2000 Mar;20(3):782-92 - PubMed
  31. Anticancer Agents Med Chem. 2013 Oct;13(8):1291-8 - PubMed
  32. Antiviral Res. 2016 Jun;130:69-80 - PubMed
  33. J Virol. 2011 Nov;85(22):12067-72 - PubMed
  34. J Gen Virol. 2003 Jul;84(Pt 7):1737-1741 - PubMed
  35. Virus Res. 2008 Aug;135(2):203-12 - PubMed
  36. Bull World Health Organ. 2011 Oct 1;89(10):766-74, 774A-774E - PubMed
  37. J Gen Virol. 2005 Sep;86(Pt 9):2513-2523 - PubMed
  38. Cell. 2015 Jul 30;162(3):488-92 - PubMed
  39. Nucleosides Nucleotides Nucleic Acids. 2000 Oct-Dec;19(10-12):2019-24 - PubMed
  40. mBio. 2016 Jun 28;7(3): - PubMed
  41. F1000Res. 2018 Feb 19;7:203 - PubMed

Publication Types