Display options
Share it on

Biomed Opt Express. 2021 Aug 13;12(9):5583-5596. doi: 10.1364/BOE.427205. eCollection 2021 Sep 01.

Treatment with LEDs at a wavelength of 642 nm enhances skin tumor proliferation in a mouse model.

Biomedical optics express

Hyeyoon Goo, SangJoon Mo, Hyeong Ju Park, Min Young Lee, Jin-Chul Ahn

Affiliations

  1. Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
  2. Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea.
  3. Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
  4. Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea.
  5. Contributed equally.

PMID: 34692202 PMCID: PMC8515971 DOI: 10.1364/BOE.427205

Abstract

Photobiomodulation (PBM) is attracting increased attention in the fields of dermatology and cosmetics. PBM with a variety of light parameters has been used widely in skin care, but can cause certain types of unwanted cells to proliferate in the skin; this can lead to skin tumors, such as papillomas and cancers. We constructed a mouse model of human skin tumors using DMBA as an initiator and TPA as a promoter, and confirmed that LEDs with a wavelength of 642 nm (red light) increased tumor size, epidermal thickness, and systemic proinflammatory cytokine levels. These results indicated that skin tumor cell proliferation may result from the use of 642 nm LEDs, suggesting the need for regulation of skin care based on LED light therapy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

Conflict of interest statement

All Authors of this manuscript declare that there are no conflicts of interest regarding this study.

References

  1. Lasers Med Sci. 2005;20(1):6-10 - PubMed
  2. Innate Immun. 2014 Apr;20(3):249-60 - PubMed
  3. Exp Dermatol. 1995 Feb;4(1):42-5 - PubMed
  4. J Drugs Dermatol. 2006 Sep;5(8):748-53 - PubMed
  5. Proc Natl Acad Sci U S A. 1990 Jan;87(2):538-42 - PubMed
  6. Lasers Surg Med. 2005 Feb;36(2):85-91 - PubMed
  7. JAMA. 1966 Jan 31;195(5):393-4 - PubMed
  8. J Exp Clin Cancer Res. 2019 Mar 6;38(1):115 - PubMed
  9. Lasers Surg Med. 2004;35(5):369-76 - PubMed
  10. J Cosmet Laser Ther. 2005 Dec;7(3-4):196-200 - PubMed
  11. Eur J Pharmacol. 2013 Jan 5;698(1-3):413-20 - PubMed
  12. Environ Health Perspect. 1983 Apr;50:3-14 - PubMed
  13. Semin Immunopathol. 2007 Apr;29(1):3-14 - PubMed
  14. Clin Orthod Res. 2001 Feb;4(1):3-14 - PubMed
  15. Carcinog Compr Surv. 1989;11:187-212 - PubMed
  16. J Biomed Opt. 2001 Apr;6(2):167-76 - PubMed
  17. Dermatol Surg. 2005 Sep;31(9 Pt 2):1199-205 - PubMed
  18. J Photochem Photobiol B. 2007 Jul 27;88(1):51-67 - PubMed
  19. Photomed Laser Surg. 2005 Jun;23(3):300-3 - PubMed
  20. J Pharm Biomed Anal. 2015 Feb;105:84-90 - PubMed
  21. J Drugs Dermatol. 2004 Nov-Dec;3(6):605-10 - PubMed
  22. Am J Physiol Heart Circ Physiol. 2014 Apr 15;306(8):H1154-63 - PubMed
  23. Photochem Photobiol. 2014 Nov-Dec;90(6):1349-58 - PubMed
  24. J Invest Dermatol. 2019 Aug;139(8):1837-1840.e3 - PubMed
  25. Clin Oral Implants Res. 2003 Feb;14(1):91-6 - PubMed
  26. J Invest Dermatol. 2009 Dec;129(12):2751-9 - PubMed
  27. J Biophotonics. 2013 Oct;6(10):829-38 - PubMed
  28. Am J Roentgenol Radium Ther Nucl Med. 1966 Mar;96(3):744-8 - PubMed
  29. J Cosmet Dermatol. 2007 Sep;6(3):189-94 - PubMed
  30. Food Funct. 2014 Jul 25;5(7):1422-31 - PubMed
  31. J Appl Toxicol. 2013 Aug;33(8):828-37 - PubMed
  32. Cancer Cell. 2012 Dec 11;22(6):725-36 - PubMed
  33. J Photochem Photobiol B. 1999 Mar;49(1):1-17 - PubMed
  34. Lasers Surg Med. 1989;9(5):497-505 - PubMed
  35. Photomed Laser Surg. 2011 Nov;29(11):741-5 - PubMed
  36. J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200 - PubMed

Publication Types