Display options
Share it on

Chem Sci. 2021 Nov 03;12(44):14758-14765. doi: 10.1039/d1sc04638a. eCollection 2021 Nov 17.

Picomolar FKBP inhibitors enabled by a single water-displacing methyl group in bicyclic [4.3.1] aza-amides.

Chemical science

Jürgen M Kolos, Sebastian Pomplun, Sascha Jung, Benedikt Rieß, Patrick L Purder, Andreas M Voll, Stephanie Merz, Monika Gnatzy, Thomas M Geiger, Ingrid Quist-Løkken, Jerome Jatzlau, Petra Knaus, Toril Holien, Andreas Bracher, Christian Meyners, Paul Czodrowski, Vera Krewald, Felix Hausch

Affiliations

  1. Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany [email protected].
  2. Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany.
  3. Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany.
  4. Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology 7491 Trondheim Norway.
  5. Department of Immunology and Transfusion Medicine, St. Olav's University Hospital 7030 Trondheim Norway.
  6. Department of Hematology, St. Olav's University Hospital 7030 Trondheim Norway.
  7. Institute for Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany.
  8. Research Department Cellular Biochemistry, Max Planck Institute of Biochemistry Am Klopferspitz 18, 82152 Planegg Germany.

PMID: 34820091 PMCID: PMC8597852 DOI: 10.1039/d1sc04638a

Abstract

Methyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.1] aza-amides, robustly leading to a 2 to 10-fold increase in binding affinity for FK506-binding proteins (FKBPs). This resulted in the most potent and efficient FKBP ligands known to date. By a combination of co-crystal structures, isothermal titration calorimetry (ITC), density-functional theory (DFT), and 3D reference interaction site model (3D-RISM) calculations we elucidated the origin of the observed affinity boost, which was purely entropically driven and relied on the displacement of a water molecule at the protein-ligand-bulk solvent interface. The best compounds potently occupied FKBPs in cells and enhanced bone morphogenic protein (BMP) signaling. Our results show how subtle manipulation of the solvent network can be used to design atom-efficient ligands for difficult, solvent-exposed binding pockets.

This journal is © The Royal Society of Chemistry.

Conflict of interest statement

There are no conflicts to declare.

References

  1. Chem Rev. 2011 Sep 14;111(9):5215-46 - PubMed
  2. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17195-17203 - PubMed
  3. J Chem Inf Model. 2016 Jan 25;56(1):223-33 - PubMed
  4. J Am Chem Soc. 2021 Apr 7;143(13):5141-5149 - PubMed
  5. Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16314-16319 - PubMed
  6. J Med Chem. 2016 Nov 10;59(21):9622-9644 - PubMed
  7. J Med Chem. 2012 May 10;55(9):4489-500 - PubMed
  8. Nature. 2020 Apr;580(7805):621-627 - PubMed
  9. Nature. 2020 Apr;580(7803):329-338 - PubMed
  10. Cell Chem Biol. 2021 Sep 16;28(9):1253-1255 - PubMed
  11. J Med Chem. 2021 Mar 25;64(6):3320-3349 - PubMed
  12. Science. 2021 Apr 23;372(6540):398-403 - PubMed
  13. Nat Commun. 2021 Jul 30;12(1):4643 - PubMed
  14. Org Lett. 2014 Oct 17;16(20):5254-7 - PubMed
  15. J Biol Chem. 2012 Oct 26;287(44):36990-8 - PubMed
  16. J Cell Sci. 2018 Jun 11;131(11): - PubMed
  17. Drug Discov Today. 2016 Jul;21(7):1139-46 - PubMed
  18. Chemistry. 2020 Apr 9;26(21):4677-4681 - PubMed
  19. J Med Chem. 2013 May 23;56(10):3922-35 - PubMed
  20. Chembiochem. 2021 Jul 1;22(13):2257-2261 - PubMed
  21. Chem Commun (Camb). 2020 Apr 21;56(31):4360-4363 - PubMed
  22. Angew Chem Int Ed Engl. 2013 Nov 18;52(47):12256-67 - PubMed
  23. Cell Chem Biol. 2019 May 16;26(5):652-661.e4 - PubMed
  24. Nat Chem. 2019 Mar;11(3):254-263 - PubMed
  25. Front Pharmacol. 2018 Dec 05;9:1425 - PubMed
  26. Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17158-17162 - PubMed
  27. J Med Chem. 2018 Apr 26;61(8):3660-3673 - PubMed
  28. J Med Chem. 2016 Dec 8;59(23):10530-10548 - PubMed
  29. Nat Commun. 2018 Sep 3;9(1):3559 - PubMed
  30. Angew Chem Int Ed Engl. 2019 Jul 8;58(28):9429-9433 - PubMed
  31. Angew Chem Int Ed Engl. 2015 Jan 2;54(1):345-8 - PubMed
  32. Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13257-13263 - PubMed
  33. J Biol Chem. 2002 Feb 15;277(7):4883-91 - PubMed
  34. Nat Chem Biol. 2015 Jan;11(1):33-7 - PubMed
  35. Chem Sci. 2020 Nov 19;12(3):960-968 - PubMed
  36. Expert Opin Drug Discov. 2019 Dec;14(12):1221-1225 - PubMed
  37. Cell Chem Biol. 2021 Sep 16;28(9):1271-1282.e12 - PubMed
  38. J Med Chem. 2017 Aug 24;60(16):6781-6827 - PubMed
  39. J Am Chem Soc. 2019 Jul 31;141(30):11759-11764 - PubMed
  40. J Med Chem. 2020 Nov 25;63(22):13355-13388 - PubMed
  41. ChemMedChem. 2012 Aug;7(8):1351-9 - PubMed

Publication Types