Display options
Share it on

Cell Rep. 2021 Nov 30;37(9):110060. doi: 10.1016/j.celrep.2021.110060.

CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment.

Cell reports

Jennifer E Klomp, Ye S Lee, Craig M Goodwin, Björn Papke, Jeff A Klomp, Andrew M Waters, Clint A Stalnecker, Jonathan M DeLiberty, Kristina Drizyte-Miller, Runying Yang, J Nathaniel Diehl, Hongwei H Yin, Mariaelena Pierobon, Elisa Baldelli, Meagan B Ryan, Siqi Li, Jackson Peterson, Amber R Smith, James T Neal, Aaron K McCormick, Calvin J Kuo, Christopher M Counter, Emanuel F Petricoin, Adrienne D Cox, Kirsten L Bryant, Channing J Der

Affiliations

  1. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  2. Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  3. Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  4. Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ, USA.
  5. Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
  6. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC.
  7. Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA.
  8. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  9. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  10. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: [email protected].

PMID: 34852220 PMCID: PMC8665414 DOI: 10.1016/j.celrep.2021.110060

Abstract

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: CHK1; DNA damage; ERK; KRAS; MYC; RIF1; pancreatic cancer

Conflict of interest statement

Declaration of interests C.J.D. is a consultant/advisory board member for Anchiano Therapeutics, Deciphera Pharmaceuticals, Mirati Therapeutics, and Revolution Medicines. C.J.D. has received research

References

  1. Nat Methods. 2007 Oct;4(10):847-9 - PubMed
  2. Mol Cell. 2013 Mar 7;49(5):872-83 - PubMed
  3. BMC Cancer. 2017 Feb 15;17(1):137 - PubMed
  4. Cell Syst. 2015 Dec 23;1(6):417-425 - PubMed
  5. Cell Cycle. 2011 Feb 1;10(3):481-91 - PubMed
  6. iScience. 2021 May 29;24(6):102664 - PubMed
  7. Nat Med. 2019 Apr;25(4):628-640 - PubMed
  8. Cancer Cell. 2014 May 12;25(5):697-710 - PubMed
  9. Curr Biol. 2019 Apr 1;29(7):1232-1242.e5 - PubMed
  10. Nat Commun. 2015 Apr 16;6:6823 - PubMed
  11. Sci Rep. 2015 May 18;5:10129 - PubMed
  12. Science. 2007 May 25;316(5828):1160-6 - PubMed
  13. Mol Interv. 2011 Apr;11(2):133-40 - PubMed
  14. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  15. Curr Protoc Protein Sci. 2014 Feb 03;75:27.7.1-27.7.29 - PubMed
  16. Cancer Cell. 2016 Jan 11;29(1):75-89 - PubMed
  17. Nat Biotechnol. 2016 Feb;34(2):184-191 - PubMed
  18. Nat Commun. 2019 Jul 23;10(1):3287 - PubMed
  19. Nat Commun. 2018 Nov 2;9(1):4610 - PubMed
  20. Science. 2017 Mar 17;355(6330):1158-1163 - PubMed
  21. J Clin Invest. 2012 Jun;122(6):2092-103 - PubMed
  22. Clin Cancer Res. 2017 Aug 15;23(16):4919-4928 - PubMed
  23. Cell Discov. 2015 Aug 04;1:15019 - PubMed
  24. Invest New Drugs. 2011 Oct;29(5):1021-8 - PubMed
  25. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13374-13383 - PubMed
  26. Cancer Res. 2019 Oct 1;79(19):4855-4868 - PubMed
  27. Sci Signal. 2014 Dec 23;7(357):ra121 - PubMed
  28. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  29. Nat Med. 2019 Apr;25(4):620-627 - PubMed
  30. FEBS Lett. 2017 Sep;591(17):2607-2615 - PubMed
  31. Oncotarget. 2017 Oct 31;8(67):111026-111040 - PubMed
  32. Gut. 2014 Jun;63(6):984-95 - PubMed
  33. Cancer Cell. 2013 Jan 14;23(1):121-8 - PubMed
  34. Biochem Soc Trans. 2021 Feb 26;49(1):253-267 - PubMed
  35. Adv Cancer Res. 2010;108:73-112 - PubMed
  36. Clin Cancer Res. 2013 Aug 15;19(16):4412-21 - PubMed
  37. Invest New Drugs. 2012 Jun;30(3):1216-23 - PubMed
  38. Cell Rep. 2021 Mar 2;34(9):108808 - PubMed
  39. Cell. 2009 Mar 6;136(5):823-37 - PubMed
  40. Cell. 2015 Jan 15;160(1-2):324-38 - PubMed
  41. EMBO J. 2018 Mar 1;37(5): - PubMed
  42. Mol Cell Biol. 2006 Oct;26(20):7529-38 - PubMed
  43. Clin Cancer Res. 2015 Mar 15;21(6):1243-7 - PubMed
  44. Clin Cancer Res. 2011 Jun 1;17(11):3706-15 - PubMed
  45. Cell Cycle. 2012 Jan 1;11(1):170-6 - PubMed
  46. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):773-8 - PubMed
  47. CA Cancer J Clin. 2021 Jan;71(1):7-33 - PubMed
  48. Cell Cycle. 2015;14(23):3713-24 - PubMed
  49. Oncogene. 2012 Mar 29;31(13):1661-72 - PubMed
  50. Mol Cancer Ther. 2017 Apr;16(4):694-704 - PubMed
  51. F1000Res. 2015 Dec 30;4:1521 - PubMed
  52. Biochem J. 2012 Sep 15;446(3):373-81 - PubMed
  53. Cell Rep. 2021 Jun 29;35(13):109291 - PubMed
  54. Genome Biol. 2014 Feb 03;15(2):R29 - PubMed
  55. Cancer Discov. 2018 Sep;8(9):1112-1129 - PubMed
  56. Blood. 2011 Nov 10;118(19):5189-200 - PubMed
  57. Oncogenesis. 2019 Jun 17;8(7):38 - PubMed
  58. Nat Methods. 2014 Aug;11(8):783-784 - PubMed
  59. Nat Commun. 2018 Sep 7;9(1):3646 - PubMed
  60. Cell. 2018 Apr 5;173(2):400-416.e11 - PubMed
  61. Cold Spring Harb Perspect Med. 2014 Mar 01;4(3): - PubMed
  62. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 - PubMed
  63. J Thorac Oncol. 2010 Oct;5(10):1630-6 - PubMed
  64. Cancer Res. 2010 Jun 15;70(12):4972-81 - PubMed
  65. Cancer Lett. 2018 Aug 28;430:34-46 - PubMed
  66. Mol Oncol. 2019 Feb;13(2):307-321 - PubMed
  67. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  68. Cell Cycle. 2016 Nov 16;15(22):3131-3145 - PubMed
  69. Blood. 2008 Sep 15;112(6):2439-49 - PubMed
  70. Nat Rev Clin Oncol. 2018 Nov;15(11):709-720 - PubMed
  71. Cancer Res. 2007 Mar 1;67(5):2098-106 - PubMed
  72. Pharmacol Res Perspect. 2015 Jun;3(3):e00149 - PubMed
  73. Cancer Cell. 2017 Aug 14;32(2):185-203.e13 - PubMed
  74. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4508-4517 - PubMed
  75. Methods Mol Biol. 2017;1606:51-70 - PubMed
  76. Mol Cell. 2013 Mar 7;49(5):858-71 - PubMed
  77. Cell Death Differ. 2010 Nov;17(11):1739-50 - PubMed
  78. Nat Genet. 2017 Dec;49(12):1779-1784 - PubMed
  79. Cancer Cell. 2018 Nov 12;34(5):807-822.e7 - PubMed
  80. Nat Rev Drug Discov. 2020 Aug;19(8):533-552 - PubMed
  81. Nat Cell Biol. 2005 Feb;7(2):195-201 - PubMed
  82. Cell Death Discov. 2016 Mar 21;2:16011 - PubMed
  83. Int J Cancer. 2020 Aug 15;147(4):1059-1070 - PubMed
  84. Cell. 2017 Jul 27;170(3):564-576.e16 - PubMed
  85. Cold Spring Harb Perspect Med. 2018 Sep 4;8(9): - PubMed
  86. Genet Mol Biol. 2019 Dec 13;43(1 suppl 1):e20190138 - PubMed
  87. Cell Mol Life Sci. 2016 Dec;73(23):4397-4413 - PubMed
  88. Nat Methods. 2017 Apr;14(4):417-419 - PubMed
  89. Pharmacol Ther. 2018 Aug;188:155-167 - PubMed
  90. Radiother Oncol. 2018 Mar;126(3):450-464 - PubMed
  91. EMBO Rep. 2010 Nov;11(11):868-75 - PubMed
  92. Cell. 2018 Dec 13;175(7):1972-1988.e16 - PubMed
  93. Breast Cancer Res. 2019 Sep 6;21(1):104 - PubMed
  94. Cell. 2012 Apr 27;149(3):656-70 - PubMed
  95. Cell Rep. 2019 Oct 1;29(1):118-134.e8 - PubMed
  96. Bioinformatics. 2005 Aug 15;21(16):3439-40 - PubMed
  97. Science. 2008 Sep 26;321(5897):1801-6 - PubMed
  98. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6842-6847 - PubMed
  99. Cell Rep. 2020 Jun 16;31(11):107764 - PubMed
  100. Cancer Res. 2016 Jun 1;76(11):3319-31 - PubMed
  101. Mol Syst Biol. 2014 Jul 01;10:733 - PubMed
  102. Genes Dev. 2004 Sep 1;18(17):2108-19 - PubMed

Publication Types

Grant support